

Measuring Discrepancies in Attack Surfaces Generated By Internet Intelligence Platforms

Martin Price

m.g.price@lancaster.ac.uk

Nicholas Race, Paul Smith

- In 2024, half of all UK businesses faced a disruptive cyber attack, even more recent with M&S
- Organisations and Policymakers are searching for solutions
- To understand the risk faced, the attack surface of an organisation must be known
- Motivated by previous work with the NCSC who wanted to understand an attack surface and vulnerabilities at a sector-wide scale.

The External Attack Surface

- "Assets or services that are publicly reachable online" NCSC [1]
- We quantify this as the IP addresses of the assets or services, such as a webpage host.
- Theoretically, it is easy to discover the surface, just ask the Regional Internet Registry
- All your services run on your assigned addresses, inside your 'castle'

The External Attack Surface

- Cloud Computing and Third-Party hosting has made it difficult to map
- Services are being hosted externally
- Crucial services are no longer within your managed network, moved outside your 'castle'
- Manually discovering this surface is problematic, there is no ground-truth
- EASM tools attempt to mitigate this

5
${}{} \to \oplus$

Internet Intelligence Platforms

- Also known as Internet Search Engines or Web Spiders...
- Continually scans the internet, grabbing as much data as possible, such as TLS certificates and Domain Names
- Integral in current attack surface research [1,2]
- Their difference in scanning methods could result in discrepancies

Shodan		Censys		ZoomEye	
Country	America	Country	America	Country	Hong Kong
Background	Product	Background	Research	Background	Product
Pricing	Subscription	Pricing	Credits	Pricing	Credits
Cost	\$69 - \$1099	Cost	\$100 - \$7200	Cost	\$19 - \$1099
Approach	Proprietary	Approach	ZMap	Approach	???

[1] T. Ashley, S. N. G. Gourisetti, N. Brown, and C. Bonebrake, Dec. 2022, doi: <u>10.1016/j.cose.2022.102939</u>.
[2] C. Harry, I. Sivan-Sevilla, and M. McDermott, doi: <u>10.1093/cybsec/tyae032</u>.

Measuring The Discrepancy

- How significant are these discrepancies?
- Generated an attack surface using each platform
- To account for externally hosted assets, we can use TLS certificates and Domain Names
- Four organisations from the EU500 used in previous research [1]

Each Platform Has Unique Discoveries

No Platform Is Superior

Key Findings

- Depending on the platform, you will get different attack surfaces
- Platform disagree on which organisation has the biggest surface
- Using only RIRs is insufficient to create modern attack surfaces
- Omitting a single platform leads to an incomplete attack surface
- Are the results actual valid, or are they filled with bloat
- No indication of which is best, Censys discovers more ports but disagrees on attack surface size

Conclusion

- How can you know which, or how many, platforms to use?
- Multiple can be costly, especially for large-scale surfaces
- Reliance on a single platform leads to customers being misinformed about the true risk faced
- These attack surfaces are used to find vulnerabilities
- What is the ground truth? How can we be confidence in the results from the platforms?
- This is what my PhD will focus on!
- If you would like to know more, there is a SIGCOMM poster

Questions?