
SECRET
INTERSECTION

COUNT FOR
NETWORK

ALGORITHMICS

ALEXANDER BOYD

COSENERS 2025

SECRET NETWORK ALGORITHMS

• Real pressure for data-private algorithms

• Already much research in data-private algorithms, but very little
targeted at networks

• Realistic expectation that network algorithms will become data-
private

• PPM problems in networks are of primary interest

1

WORKED EXAMPLE

• A client wishes to send from a trusted network to another trusted
network, separated by an untrusted network

• The untrusted network contains (in the simple case) one pair of
potentially malicious but non-colluding servers

• The untrusted servers wish to calculate aggregate statistics over
many packets

• The sender wishes for their IP to be hidden

Trusted Network

Untrusted Network

Trusted Network

Router and server icons by Angelo Troiano and Chunk Icons from Noun Project

WORKED EXAMPLE (CONT.)

• Local gateway splits packets

• Payload is split in 2, evenly

• Header is duplicated except source field

• Source field becomes a random Boolean secret share

• e.g. 10010101 → 01001010 ⊕ 11011111

 𝑣 𝑣1 𝑣2

• For our purposes, the servers wish to calculate how many
packets have a source address equal to 𝑡

3

Real data

 Server 1 share

 Server 2 share

WORKED EXAMPLE D IAGRAM

• Server 1 gets 𝑣1 in its header and server 2 gets 𝑣2

• No single server learns anything about the source

• We can still calculate aggregates, as we will now see…

4

𝑣1 𝑣1

𝑣2 𝑣2

Server 1

Server 2

FREQUENCY COUNT USING PRIVATE EQUALITY

TEST ING

𝑣 = 𝑣1 ⨁ 𝑣2 = 𝑡?

 𝑡 ⨁ 𝑣1 ⨁ 𝑣2 = 0, if 𝑡 = 𝑣

∴ ¬𝑡 ⨁ 𝑣1 ⨁ 𝑣2 = 1, if 𝑡 = 𝑣

• Multiply all bits together and test if it equals 1!

• Boolean multiplication is appealing because the efficiency of secret
multiplication scales with the size of finite field

• Ideally the result will be shared between both servers, e.g. 0 ⊕ 1
instead of 1

• This allows us to aggregate the results without revealing an individual’s
equality test result

5

FREQUENCY COUNT PROTOCOL D IAGRAM

 𝑣

 𝑣1 ⨁ 𝑣2

 (¬𝑡 ⨁ 𝑣1) ⨁ 𝑣2

 𝒟𝓂1 (¬𝑡 ⨁ 𝑣1) ⨁ 𝒟𝓂2(𝑣2)

 𝑧1 ⨁ 𝑧2 = 𝑧 = 1 if 𝑡 = 𝑣

6

Server 1 Server 2

DISTRIBUTED MULTIPLICATION

• 𝓂 𝑣 = 𝑧

• 𝓂 1010 = 0

• 𝓂 1111 = 1

• 𝒟𝓂 𝑣 = 𝒟𝓂1 𝑣1 ⊕ 𝒟𝓂2 𝑣2 = 𝑧1 ⊕ 𝑧2 = 𝑧

• 𝒟𝓂 1010 = 𝒟𝓂1(0111) ⊕ 𝒟𝓂2(1001) = 1 ⊕ 1 = 0

• 𝒟𝓂 1111 = 𝒟𝓂1(0101) ⊕ 𝒟𝓂2(1010) = 0 ⊕ 1 = 1

7

FREQUENCY COUNT EXAMPLE

𝑡 = 1011 1001

 1011 ⨁ 0010

 (¬ 1011 ⨁ 1011) ⨁ 0010

 𝒟𝓂1 1111 ⨁ 𝒟𝓂2(0010)

 1 ⨁ 1 = 0
 because 𝑡 ≠ 𝑣

8

Server 1 Server 2

SECRET MULT IPL ICAT ION

• 𝑥 = 𝑥1 + 𝑥2, 𝑦 = 𝑦1 + 𝑦2; everything in 𝔽

• Server 1 has (𝑥1, 𝑦1), server 2 has (𝑥2, 𝑦2)

• Want to calculate 𝑥 ∙ 𝑦 = 𝑧 = 𝑧1 + 𝑧2

• 𝑥 ∙ 𝑦 = 𝑥1 + 𝑥2 ∙ 𝑦1 + 𝑦2 = 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

• Need suitable values for 𝑧1 and 𝑧2

• Server 1 can provide the 𝑥1𝑦1 part, server 2 the 𝑥2𝑦2 part

• The hard bit is the cross-products

9

BEAVER TRIPLES

• Randomly generated triple of multiplication 𝑎, 𝑏, 𝑐 , where 𝑐 = 𝑎𝑏

• 𝑎, 𝑏, 𝑐 = 𝑎1, 𝑏1, 𝑐1 + 𝑎2, 𝑏2, 𝑐2

• Calculated collaboratively, no single server knows real values
• (details of triple generation omitted)

• Allows the servers to combine their secrets and safely publish

• The servers can then multiply the published values and ‘fix’
according to their secrets

• 𝑑𝑖 = 𝑥𝑖 − 𝑎𝑖 , 𝑒𝑖 = 𝑦𝑖 − 𝑏𝑖

• 𝑑 = 𝑑1 + 𝑑2, 𝑒 = 𝑒1 + 𝑒2

• 𝑧𝑖 is calculated as:
1

2
𝑑𝑒 + 𝑑𝑏𝑖 + 𝑒𝑎𝑖 + 𝑐𝑖

10

BEAVER TRIPLES (CONT.)

𝑑 = 𝑥 − 𝑎, 𝑒 = 𝑦 − 𝑏

• σ𝑖
1

2
𝑑𝑒 + 𝑑𝑏𝑖 + 𝑒𝑎𝑖 + 𝑐𝑖

 = 𝑑𝑒 + 𝑑𝑏 + 𝑒𝑎 + 𝑐

 = 𝑥 − 𝑎 ∙ 𝑦 − 𝑏 + 𝑥 − 𝑎 ∙ 𝑏 + 𝑦 − 𝑏 ∙ 𝑎 + 𝑐

 ⋮

 = 𝑥𝑦

• Beaver triples can be precomputed

• ‘Live’ communication of 2 bits both ways

11

GOING BACK…

• Recall: 𝒟𝓂(𝑣) = 𝒟𝓂1 𝑣1 ⊕ 𝒟𝓂2 𝑣2 = 𝑧1 ⊕ 𝑧2 = 𝑧

• Since the output is secret shared, we can repeat protocol until all
bits have been multiplied

1001 = 0100 ⊕ 1101

0|01 = 1|00 ⊕ 1|01

0|1 = 0|0 ⊕ 0|1

0 = 1 ⊕ 1

12

𝒟𝓂(∙)

𝒟𝓂(∙)

𝒟𝓂(∙)

𝒟𝓂1 ∙

𝒟𝓂1 ∙

𝒟𝓂1 ∙

𝒟𝓂2 ∙

𝒟𝓂2 ∙

𝒟𝓂2 ∙

PRIO+ PROTOCOL

• Cannot aggregate in 𝔽2

• 1 = 0 ⊕ 1 → 5 + 6 in 𝔽10

• 0 = 1 ⊕ 1 → 3 + 7

• 1 = 0 ⊕ 1 → 1 + 0

• 0 = 0 ⊕ 0 → 9 + 1

 8 + 4 = 2

• We can do this conversion in a similar way to Beaver triples

13

ALL IN ALL…

• We now have a complete system for privately querying frequency
count of a specific source

• One could query prefixes too

• Efficiency: highly parallelisable and requires only a small amount
of communication per packet

• e.g. (160 − 1 ∙ 4 + 2 = 638) / 8 = ~80 bytes per packet for 20-
byte source field

• ~80kB for 1000 packets

• Future work: there are surely many other network algorithms that
can be privatised

14

	Slide 0: Secret intersection count for Network Algorithmics
	Slide 1: Secret Network Algorithms
	Slide 2: Worked Example
	Slide 3: Worked Example (cont.)
	Slide 4: Worked Example diagram
	Slide 5: Frequency Count using private equality testing
	Slide 6: Frequency count protocol diagram
	Slide 7: Distributed Multiplication
	Slide 8: Frequency count example
	Slide 9: Secret Multiplication
	Slide 10: Beaver triples
	Slide 11: Beaver triples (cont.)
	Slide 12: Going back…
	Slide 13: Prio+ Protocol
	Slide 14: All in all…
	Slide 15

