

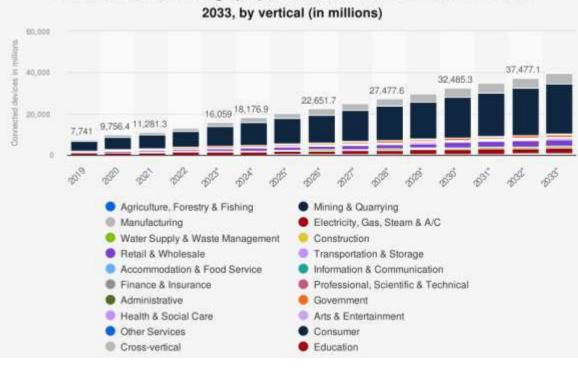
TwinGuard: An Adaptive Digital Twin for Real-Time HTTP(S) Intrusion Detection and Threat Intelligence

Yuanyuan Zhou, Anna Maria Mandalari Ryu Kuki, Takayuki Sasaki, Katsunari Yoshioka

Motivation

3

- Modern IoT Challenges Demand New Defences

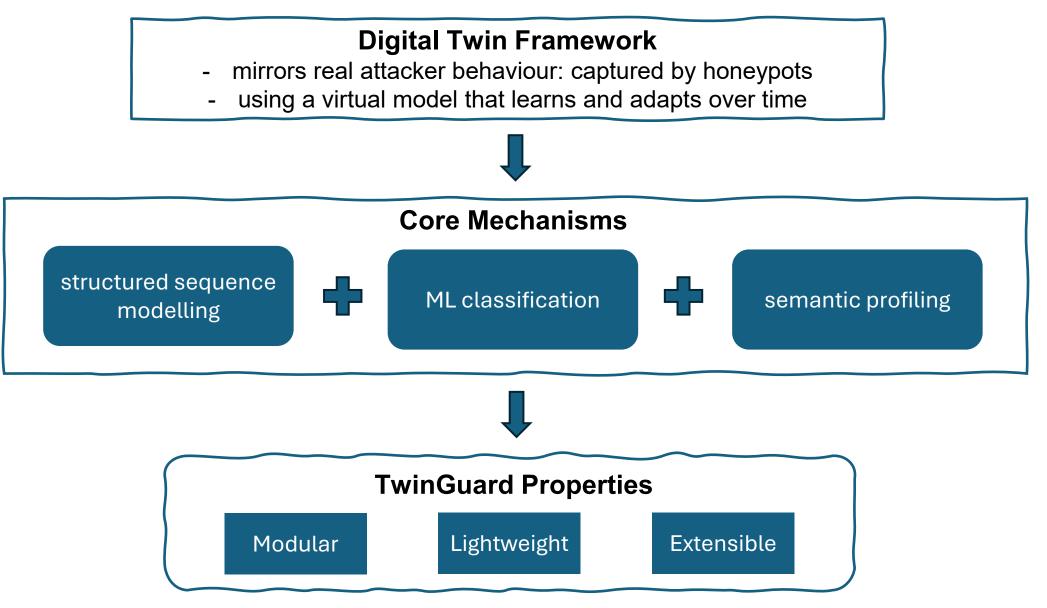


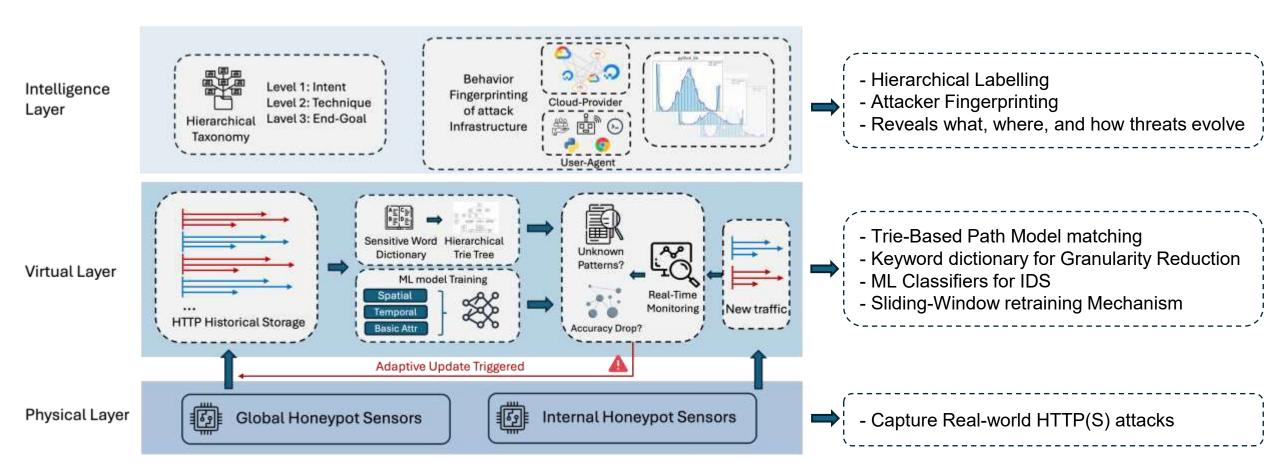
infrastructure domains Number of Internet of Things (IoT) connected devices worldwide from 2019 to Traditional IDS struggle with evolving, obfuscated threats **Resource constraints** on IoT and edge devices limit the feasibility of heavy-weight security solutions Limited labelled data in real world settings makes supervised detection difficult Real-time, adaptive, and explainable intrusion detection is urgently needed

IoT devices are widely deployed across critical

Figure source: Transforma Insights. "Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2033, by Vertical (in Millions)." Statista, Statista Inc., 10 May 2024, https://www.statista.com/statistics/1194682/iotconnected-devices-vertically/

Introduction

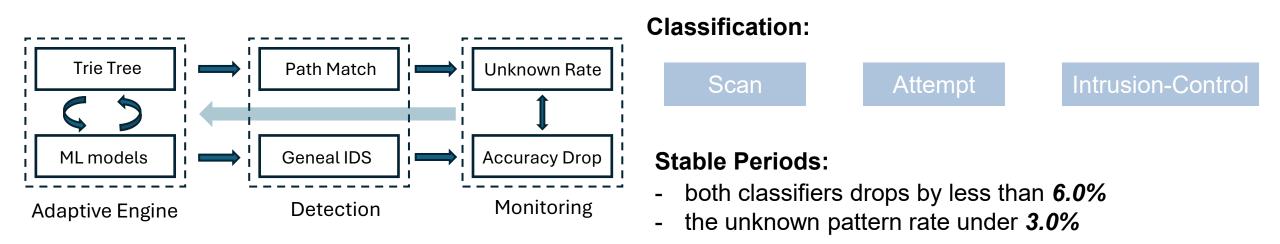




Physical Layer – Honeypot Networks and Data Acquisition

GLOBAL Primary Honeypot Network 3,377,335 HTTP(S) session records YBER ANCE 200+ sensors deployed ProxyPot 2025-04-09 2025-03-15 237,595-16,316,793 2025-03-31 2025-03-26 Internal Honeypot Network 847,869 HTTP requests To test generalization under heterogeneous input 19 sensors deployed **X-POT** YNU

70% of fields align with our primary schema



Trie Monitoring

interpretable view of structured request paths by aggregating common behaviour patterns

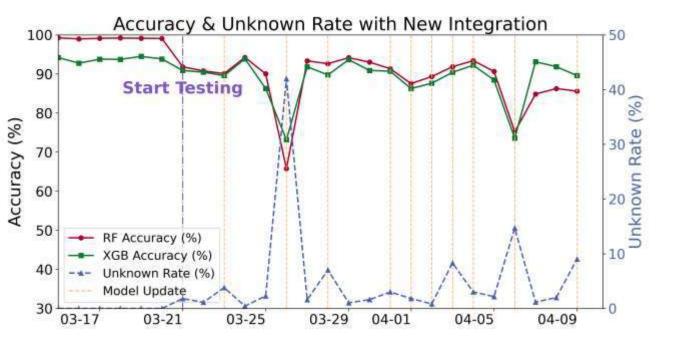
Machine learning classifiers

general-purpose intrusion detection component

Sliding Window Mechanism

continuously monitors performance degradation and structural novelty within the HTTP(S) traffic stream

Adaptive ability with the integration of X-POT



Adaptation to a new honeypot (X-Pot) source under window size w = 6.

A surge in unknown sequences and an accuracy drop is observed upon integration, followed by recovery after retraining.

Hierarchical Pattern-Based Intrusion Labelling

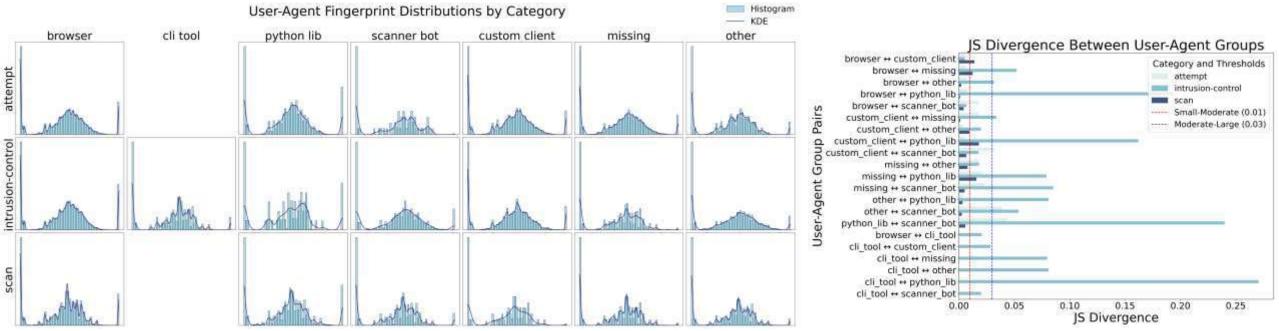
Intrusion Category	Technique	End Goal
Exploit Attempts	File Inclusion (LFI/RFI)	Code Execution
	Misconfiguration Exploit	Priv. Esc. / Info Leak
	REST/JSON Abuse	Data Leak / Enumeratior
	SQL Injection (SQLi)	DB Access / Bypass
	Command Injection	Code Execution
	Denial of Service (DoS)	Resource Exhaustion
Web Shell Upload	Simple Shell Upload	Persistent Access
	Obfuscated Shell Upload	Stealth Backdoor
	Two-Stage Payload	Loader & Dropper
Post-Exploitation Activity	Botnet C2 Callback	Remote Control
	Cronjob Deployment	Persistence
	Spam Mailer Setup	Email Abuse
	Proxy/Relay Deployment	Lateral Movement
Delivery / Downloader	Direct Script Drop	Code Execution
	Drive-by Download / JS	User Exploitation
Obfuscated / Anomalous Behavior	Junk Payload Flood	Resource Exhaustion
	Unknown Pattern	Undiscovered Variant

Hierarchical taxonomy structure:

- Level 1: Parent Category (e.g., Exploit, Downloader) ~*high-level intent*
- Level 2: Subtypes (e.g., SQLi, Command Injection). *~how it's done*
- Level 3: End Goals (Execution, Leak, etc.).
 ~why the attacker is doing it

Attacker Behavioural Fingerprinting Feature distributions are visualized using histograms and kernel density estimates (KDE)

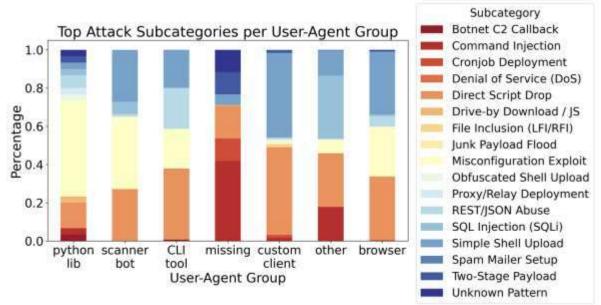
User-Agent



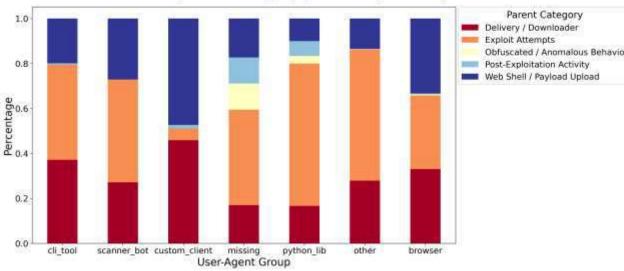
The *x*-axis represents different HTTP session features, and the *y*-axis indicates their normalized values across sessions.

- Diverse behaviour across UA groups, especially in intrusion-control.
- High divergence observed between scanner bot, python library, indicates distinct attack behaviours.

User-Agent



Attack Distribution by Parent Category per User-Agent Group



Browser and CLI tool

- traditional probing behaviour.

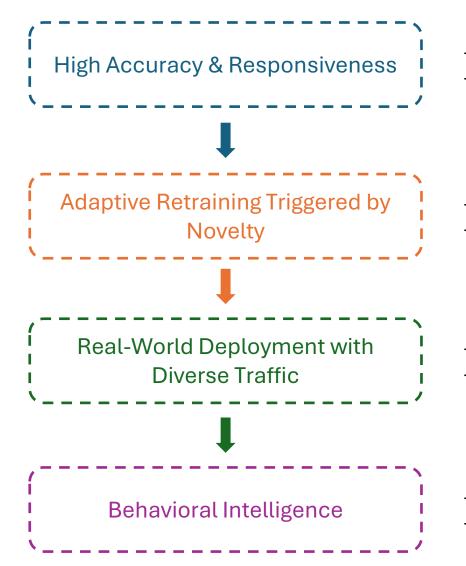
python libraries and scanner bots

- greater technique diversity

The missing and other categories

- spoofed or unstable automation strategies.
- Same analysis apply to "Cloud Providers", but shows Minor Exploit Variations
- Confirms cloud-based attacks are likely templated and automated, regardless of provider.

Conclusion



- Maintains >90% accuracy during stable periods
- **Dual classifiers + sequence monitoring (Trie)** ensure robustness

- Strong negative correlation between unknown rate and accuracy
- 42% spike in unknowns + 30% accuracy drop mitigated in 1 update cycle

- Processes traffic from **heterogeneous honeypot sources**
- Demonstrates adaptability across environments

- Reveals diverse attacker behaviour across user-agent types
- Cloud-based traffic shows consistent patterns → shared tooling

Follow us: <u>https://safenetiot.github.io/</u> <u>https://www.youtube.com/watch?v=0fg0acuRbUA</u>

Contact: <u>yuanyuan.zhou.23@ucl.ac.uk</u>

others

Future Work

Quantitative Measurements of Lightweight and Criteria for threshold selection

How the attacks are evolving Quantify the **behavior drift**

Sequence input simulating live stream, instead of the daily window

Temporal Bias (26 days) -> 3 months

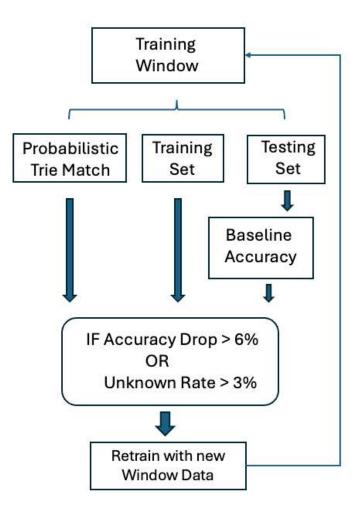
Real-World Deployment & Evaluation

Transition from honeypot-only testing to real production environments

Virtual Layer – Real-Time Monitoring and Adaptive Detection

Sliding Window Mechanism

continuously monitors performance degradation and structural novelty within the HTTP(S) traffic stream



Monitoring module: Adaptive Loop Structure

Classification:

Stable Periods:

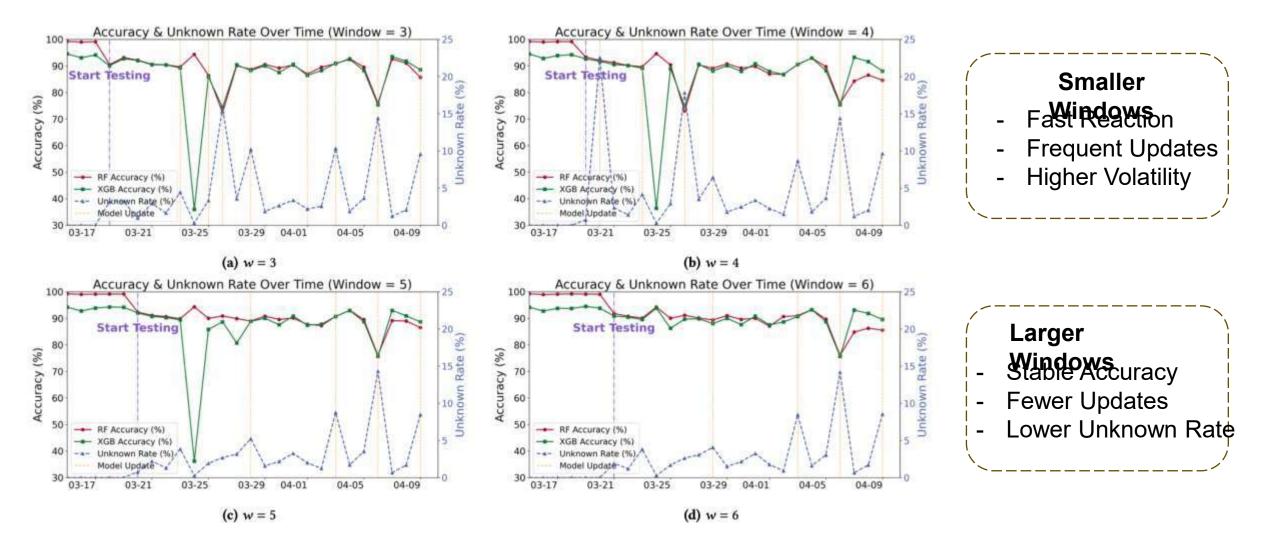
- both classifiers drops by less than **6.0%**
- the unknown pattern rate under 3.0%

Labeling Criteria:

- Intrusions are labelled using **rule-based matching** of structured request paths, **payload content**, and **endpoint semantics**.
- If a spike in unknown patterns occurs without existing labels, we check if **new labelling is needed** to maintain detection accurate.

Virtual Layer – Real-Time Monitoring and Adaptive Detection

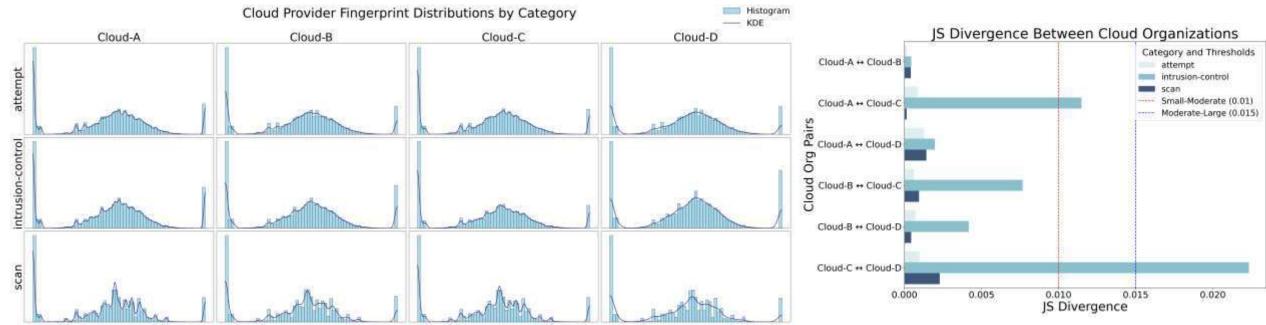
Accuracy and Unknown Rate Dynamics



w = 6 strikes a balance between the model utility and stable performance

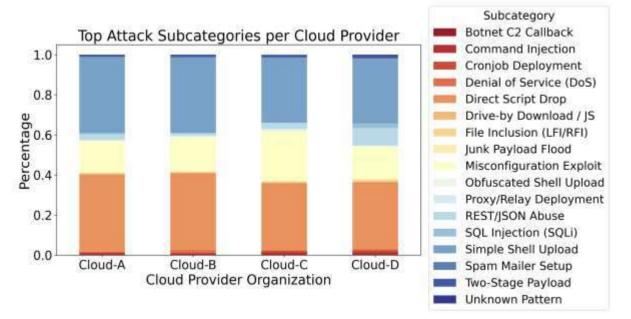
Attacker Behavioural Fingerprinting

Cloud Provider

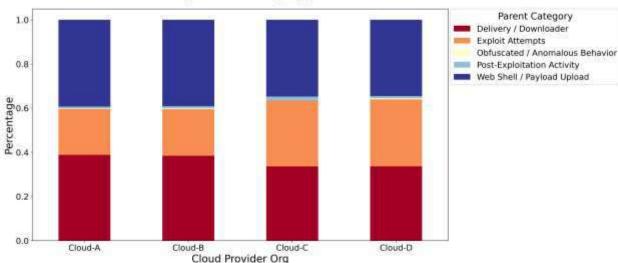


- **Overall low divergence** \rightarrow attack behaviour is largely consistent across cloud platforms.
- Cloud C shows slight divergence in intrusion-control attacks.
- Impact is minimal → cloud provider has limited influence on attack diversity.

Cloud Provider

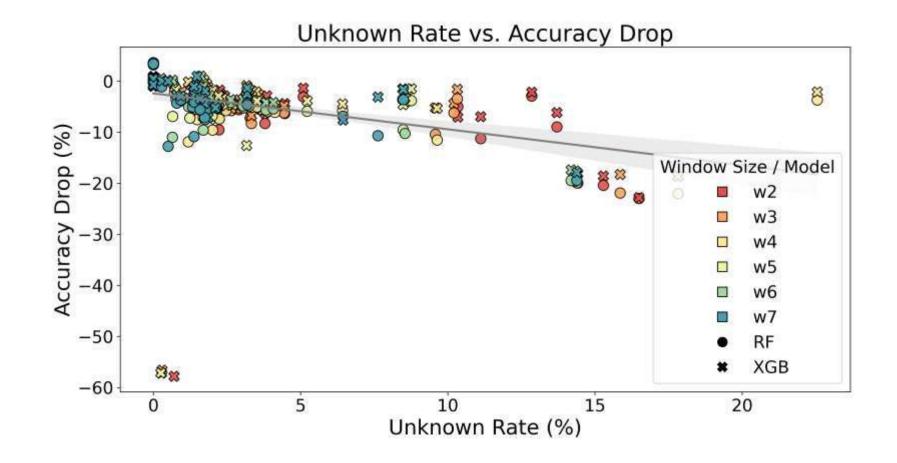


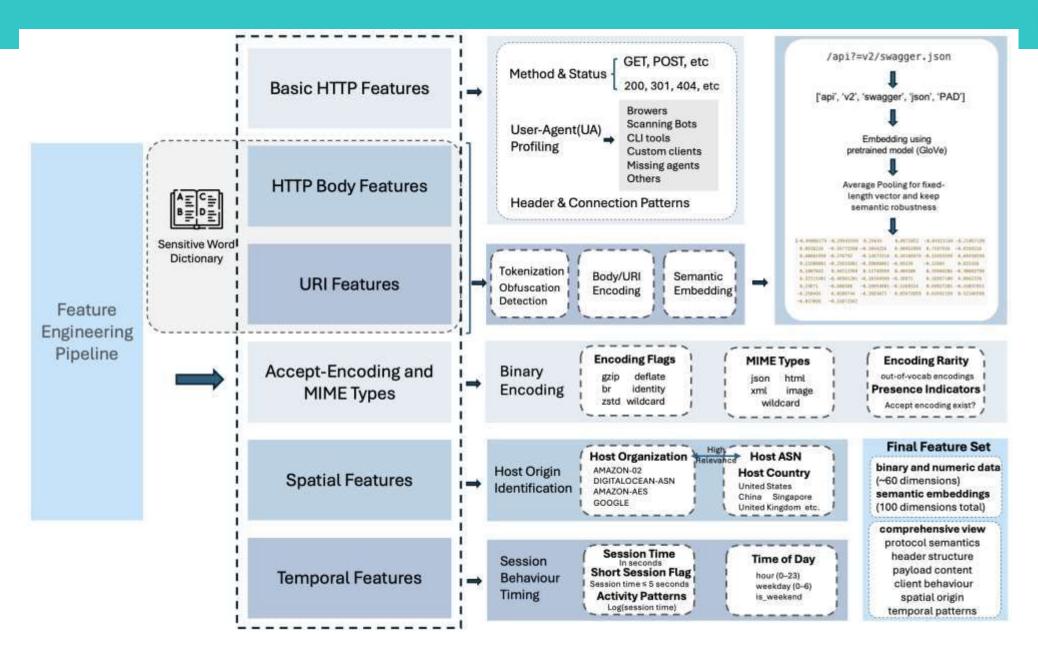
Attack Distribution by Parent Category per Cloud Provider



- Shared Attack Focus: All cloud providers show similar dominance in script drops & shell uploads, matching low JS divergence.
- Minor Exploit Variations: Slight shifts (e.g., more SQLi on Cloud-D, misconfiguration on Cloud-C) don't alter overall behaviour.
- Confirms cloud-based attacks are likely **templated and automated**, regardless of provider.

UCL





1. Drift Detection Across Sequences

Goal:

Quantify how much new behavior appears over time. You can do this by:

Comparing each new sequence to a baseline (e.g., first day/week)Measuring:

- **Unknown rate** (e.g., new URI tokens or unseen paths)
- Distributional change (e.g., cosine distance between feature means)
- Jensen-Shannon divergence, etc.

Outcome:

Plots like:

X-axis: Time (each sequence window) Y-axis: Drift score (distance or novelty)

"We observe that while new sensitive keywords and unique attack sequences continue to appear throughout the monitoring period, the rate of discovery slows over time, and most features become inactive soon after their initial appearance. This long-tailed, bursty dynamic reflects a continually evolving attack landscape, with only a small subset of features repeatedly targeted over multiple days."

