
EDGELESS: A Serverless
Platform Connecting Edge and
Cloud
by Roman Kolcun, Chen Chen, Richard Mortier, and many others

Consortium

Disclaimer: most of figures were stolen from our
partner’s presentation.

2

Key Requirements - Programming Model

● Provide stateful execution (as opposed to stateless)
● Support various QoS
● Integrate external resources - sources of data and data sinks
● Use workflows as main deployment unit and asynchronous invocation pattern

3

Key Requirements - Runtime

● Reacting fast to changes in the network, node load, infrastructure, …
● Use resource constrained devices for computation at the edge
● Supports various specialised HW (GPU, TEE, Sensors, TMU, …)
● Optimise system based on real-time analytics of resources and activities

4

Key Requirements - Security

● Enable secure execution of functions (RUST & WASM)
● Support system-wide anomaly detection
● Support trust via authentication of edge nodes in the infrastructure

5

Main Concepts

● Functions: Basic unit of execution in the EDGELESS system
● Workflows: Can represent an execution of one or multiple functions in a sequence
● Annotations: Metadata that can be attached to functions and workflows to provide additional

information about their behavior
● Resources: Allows workflows to interact with external environments

6

EDGELESS Architecture

EDGELESS cluster is managed by an ε-
CON (controller) - accepts and deploys
workflows into an orchestration domain

EDGELESS orchestrator ε-ORC manages
the lifecycle of physical
function/resource instances on
EDGELESS nodes.

7

Functions

Function handlers:

● handle_cast: Triggered for processing
asynchronous requests

● handle_call: Triggered for synchronous
requests

● handle_init: Invoked when a function
instance is started

● handle_stop: Invoked when a function
instance is terminated

8

Methods:

● cast: send a message to a function in the
workflow

● call: send a message synchronously to a
function in the workflow

● delayed_cast: send a message to a function
in the workflow after delay milliseconds

● log: produce a line of log
● slf: retrieve the function's own InstanceId
● sync: write the state to disk/database

Workflow diagram example

9

Workflows

10

Annotations

● QoS requirements: deployment or run-time requirements enforced by the EDGELESS system,
particularly the ε-CON, ε-ORC, ε-BAL, and SLA manager

● Characteristics: hints on the expected workflow that can be used to guide the optimisation
process within EDGELESS

● Costs: cost-related information
● Configurations: operational parameters and initial settings for functions and workflows
● Deployment Constraints: specify the essential requirements for where and how functions and

workflows are deployed

11

Execution Environment

● Rust / WASM (wasmtime and wasmi runner)
● Rust / Native Execution
● Rust / Container
● Python / Container

12

Native Code Execution

● Allow to run EDGELESS functions directly on HW of various platforms
● Reduce start-up time
● Reduce memory requirements
● Improve execution speed by running the native code
● Virtualisation via toolchain

13

Native Code Execution

● Native functions are loaded using libloading
crate

● Internally relies on dlopen() function
● Relatively easy to communicate between

EDGELESS node and EDGELESS function
● Challenging the other way round
● Solution based on exporting pointers from

EDGELESS node to EDGELESS function

14

Project Website

https://github.com/edgeless-project/edgeless

15

https://github.com/edgeless-project/edgeless
https://github.com/edgeless-project/edgeless
https://github.com/edgeless-project/edgeless

	Slide 1: EDGELESS: A Serverless Platform Connecting Edge and Cloud
	Slide 2: Consortium
	Slide 3: Key Requirements - Programming Model
	Slide 4: Key Requirements - Runtime
	Slide 5: Key Requirements - Security
	Slide 6: Main Concepts
	Slide 7: EDGELESS Architecture
	Slide 8: Functions
	Slide 9: Workflow diagram example
	Slide 10: Workflows
	Slide 11: Annotations
	Slide 12: Execution Environment
	Slide 13: Native Code Execution
	Slide 14: Native Code Execution
	Slide 15: Project Website

