

Data Transport for the Orbiting Internet

Aiden Valentine School of Engineering and Informatics University of Sussex

Introduction

- *Internet from space* is widely adopted
- SpaceX, Amazon, Telesat have been and continue to deploy low earth orbit (LEO) satellite constellations
 - ... competing with/complementing terrestrial networks
- 1000s of satellites in multiple orbital shells and planes per shell
- Inter-satellite and ground station to satellite links

LEO networks are the future

- Provide internet connection to remote communities
- Have been used in the aftermath of natural disasters
- Have been used in warzones

in places where terrestrial networks are damaged

LEO Satellite Network Characteristics

- Varying RTT over time and shorter paths will change the base RTT
 - \circ Every 15 seconds the Starlink network reconfigures.
- The interruptions lead to loss, posing a challenge for lossbased protocols.
- A single path may encounter multiple bottlenecks
- Non-congestive loss due to weather interference

Network Dynamics

The Study

- How does congestion control handle the dynamic topology in terms of
 - Responsiveness in capturing bandwidth
 - o Fairness
 - Latency inflation

Selected approaches

- Cubic, SaTCP, BBRv3, Sage, Astraea, Vivace
- State of the art schemes
- Interpretable human derived schemes and Reinforcement learning

Methodology

- Mininet based emulation through LeoEM and our mininet test bed looking at ...
 - o Goodput
 - o Intra RTT Fairness
- We have conducted a systematic study comprised of 1000s of individual experiments looking at ...
 - Responsiveness
 - Inter RTT fairness
 - Efficiency

Results of LEO emulation Goodput

- Paths experience various levels of dynamics
- Hard to interpret, why do the RL schemes underperform ?

Seattle to New York (ISL)	43.3±0.4	90.8±0.5	30.8±0.6	90.0 ± 0.3	95.5±0.0	95.5±0.0
Seattle to New York (BP)	53.9 ± 0.4	91.4 ± 0.4	16.2 ± 0.7	86.0 ± 1.1	47.2±1.1	95.3±0.0
San Diego to New York (ISL)	41.2 ± 0.0	90.5 ± 0.6	32.8±1.0	89.1±0.5	95.4 ± 0.0	$95.4{\pm}0.0$
San Diego to New York (BP)	50.3 ± 1.1	91.5 ± 0.4	15.4±0.4	86.1±0.3	42.7±1.2	95.3±0.0
New York to London (ISL)	44.2±0.5	91.6±0.2	28.0 ± 0.1	89.3±0.3	$84.0 {\pm} 0.5$	95.1±0.1
San Diego to Shanghai (ISL) -	$80.6 {\pm} 0.2$	92.9 ± 0.1	49.7±1.2	90.5±0.3	95.2±0.0	95.2 ± 0.0
	Astraea	BBRv3	Sage	Vivace	Cubic	SaTCP

Results of LEO emulation Fairness over

an 2.550 to Shaight (191)	Astraea	BBRv3	Sage	Vivace	Cubic	SaTCP	0.5
san Engo to onanghai (1917)	0.821.0.0						
San Diego to Shanghai (ISL) -	0.89±0.0	0.86±0.1	0.89±0.0	0.90±0.1	0.71 ± 0.2	$0.73 {\pm} 0.2$	
New York to London (ISL)	0.66±0.0	0.84±0.1	0.91±0.0	0.89 ± 0.1	0.93±0.1	0.87±0.1	-0.6
an Diego to New York (BP)	0.85±0,1	0.81 ± 0.1	0.95±0.1	0.78±0.2	0.94±0.1	0.76±0.1	
m Diego to New York (ISL)	0.84±0.1	0.91±0.1	0.74±0.2	0.89±0.1	$0.80 {\pm} 0.1$	$0.85{\pm}0.2$	+0.8
Seattle to New York (BP)	0.87±0.1	$0.80{\pm}0.1$	$0.79 {\pm} 0.1$	0.76±0.2	0.95±0.1	0.88±0.1	-0.9
Seattle to New York (ISL)	0.82±0.1	0.87±0.1	0.75±0.2	0.88±0.1	0.84±0.1	0.82±0.1	

- Fairness appears good? But is it under-utilisation ?
- Hard to interpret fairness due to the RTT variation and lossy handovers

Microbenchmark - Responsiveness

- Human derived schemes
 are more responsive
- The RL protocols struggle with responsiveness

Microbenchmark - Responsiveness

- Cubic doing the worst
- The RL schemes are resilient to non-congestive loss

Microbenchmark – Individual run

Add bbr

Microbenchmark - Fairness Inter-RTT

- We have not found a heuristic for RTT fairness
- Embedding fairness in the reward function during training yields better fairness

OF SUSSEX

Microbenchmark - Efficiency

 Sage has learned a policy that outperforms delay based schemes

