

Understanding performance of applications based on 100GbE and RDMA

Jichun Wu

Motivation

RDMA:

- ► 70% of traffic in Azure is RDMA¹
- ► Meta GenAl 24K-GPU clusters with RDMA ²

Challenges:

- ▶ 100 Gbps and above
- Nature of RDMA

Bai et al., "Empowering Azure Storage with RDMA", 2023.

https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

Introduction

Communication delay affects application performance:

- ▶ ML: GPU idle time from 11% to 70%³.
- ► **HPC**: Latency variation slow down by 3.5x⁴.
- Datacenter: 50 μs latency degrades Memcached by 50%⁵.
- How does each layer contribute to the end-to-end latency?
- How and why are different applications affected differently?

Zilberman et al., "Where Has My Time Gone?", 2017.

Gebara, Ghobadi, and Costa, "In-network Aggregation for Shared Machine Learning Clusters", 2021.

Underwood, Anderson, and Apon, "Measuring Network Latency Variation Impacts to High Performance Computing Application Performance", 2018.

Approaches

Measurement

► Software: instrumentation in OpenMPI and rdma-core library

Emulation

► FPGA: NRG to control latency and bandwidth

Calibration

► FPGA: mini-OSNT to validate NRG and network setup

Instrumentation

- ► Tracing framework: KUtrace
- ► Target: OpenMPI, rdma-core package

Figure: Different phases of a HPC benchmark

NRG and validation

NRG6:

- ► Line-rate delay injection
- ▶ Rate control
- ► Statistics collection

mini-OSNT:

- ► Line-rate packet generation
- ▶ Timestamping

⁶ Zilberman et al., "NRG: A network perspective on applications' performance", 2021.

NRG latency verification results

- ▶ 500 ns insertion
- ► 655.36 µs maximum
- ▶ 9 ns variation

Motivation experiment

► NASA Parallel Benchmark

	Operation types	Specification
ft	floating point	Discrete 3D fast Fourier Transform, all-to-all communication
is	keys ranked	Integer Sort, random memory access
cg	floating point	Conjugate Gradient, irregular memory access and communication
mg	floating point	Multi-Grid on meshes, long- and short-distance communication
lu	floating point	Lower-Upper Gauss-Seidel solver

Table: NASA Parallel Benchmark Specifications

Motivation exp. results

Figure 1: Our results with latency injected by NRG

⁷ Underwood, Anderson, and Apon, "Measuring Network Latency Variation Impacts to High Performance Computing Application Performance", 2018.

Motivation exp. results

Figure 1: Our results with latency injected by NRG

Figure 2: Previous results by Underwood et al.⁷

Underwood, Anderson, and Apon, "Measuring Network Latency Variation Impacts to High Performance Computing Application Performance", 2018.

Plans

- ► Investigate the integer sort (IS) benchmark
- ▶ Benchmark more applications
 - ▶ File systems
 - Disaggregated memory
 - Key-value store
 - ML training
- ► Use application traces, explain the benchmark results

