

Is In-network Machine Learning So Easy?

Changgang Zheng, University of Oxford

Joint work with Mingyuan Zang (DTU), Xinpeng Hong, Riyad Bensoussane, Liam Perreault (Oxford), Zhaoqi Xiong, Thanh T. Bui, Siim Kaupmees (Cambridge), Antoine Bernabeu (École Centrale de Nantes), Lars Dittmann (DTU), Stefan Zohren (Oxford), Shay Vargaftik, Yaniv Ben-Itzhak (VMWare) and Noa Zilberman (Oxford)

Coseners 2023

Growth of network connections & data

Growth of programmable data plane architecture

Traditional Network

- Bound to specific hardware
- Limited programmability
- High barrier to modification

Programmable Network

- Different hardware, same architecture
- Enable programmable control
- Easy and centralised control and modification

What Is In-Network Machine Learning?

In-network ML refers to off load inference or entire ML processes to the network.

In-Network

Machine Learning Inference

Motivation: 3Ls

- Along the path
- Already exist

Shorter path

• Higher throughput

Page 3

• Early termination

General Machine Learning vs In-Network Machine Learning

Local PC, Servers, ... Location Network Infrastructures

P4

C, Python, MATLAB, ... Language

Training & Inference Manner Offline Training Online Inference

PISA

Resources on network devices are very limited compared to PC or servers.

- 1. Limited mathematical operations
- 2. Limited memory
- 3. Limited data types
- 4. Limited stages

How to map?

- 1. Direct mapping solution
- 2. Encode based solution
- 3. Look up based solution

Zheng et al, Automating In-Network Machine Learning, 2022

Encode based solution

Zheng et al, Automating In-Network Machine Learning, 2022

Page 7

Look-up based solution

Page 8

Planter Framework

Planter's modular framework design

Modular Use Case

Procedure Interaction

Zheng et al, Automating In-Network Machine Learning, 2022

- Models: SVM, DT, RF, XGB, IF, NB, KM, KNN, PCA, AE, NN
- Architectures: PSA, v1model, TNA
- Targets: Tofino, BMv2, P4Pi, Alveo FPGA
- Datasets: Iris, UNSW, CICIDS, AWID3, KDD ...
- **Use Cases: Anomaly Detection, Financial Transaction...**

Planter Use Cases

Anomaly Detection

IoT Traffic Classification

Load Balancing

- 1. Models Mapping
- 2. Planter Framework
- 3. Packet/Flow/File Level

- 1. Continuous learning
- 2. Runtime model update
- 3. Federated learning

- 1. In-network Q-Learning
- 2. QCMP Load Balancing

Edge Computing, Financial Market Prediction...

Planter Results: Same Accuracy?

Anomaly Detection Use Case

Planter Results: System Performance

Anomaly Detection Use Case

Financial Market Prediction Use Case

Planter Results: Scalability

Further Scale In-Network ML?

Hybrid Deployment

Distributed Deployment

Summary

- **Q:** How to realize in-network ML mapping? A: Three mapping solution: DM, EB, LB.
- Q: How to easily map ML to the data plane?
- A: Planter framework.

- **Q:** How to realize personalized use cases?
- A: By adding new modules.
- **Q:** How to further scale ML model size?
- A: Hybrid deployment & distributed deployment.

Use Case Ideas? New Challenges?

Changgang Zheng Noa Zilberman Changgang.zheng@eng.ox.ac.uk https://changgang-zheng.github.io/Home-Page https://eng.ox.ac.uk/computing

List of Papers:

Xiong & Zilberman, Do Switches Dream of Machine Learning?, 2019 Zheng et al, Planter: Seeding Trees Within Switches, 2021 Zheng et al, Ilsy: Practical In-Network Classification, 2022 Zheng et al, Automating In-Network Machine Learning, 2022 Hong et al, Linnet: Limit Order Books Within Switches, 2022 Zang et al, P4Pir: In-Network Analysis for Smart IoT Gateways, 2022 Hong et al, LOBIN: In-Network Machine Learning for Limit Order Books, 2023 Zang et al, Federated Learning-Based In-Network Traffic Analysis on IoT Edge, 2023 Zheng et al, QCMP: Load Balancing via In-network Reinforcement Learning, 2023

EB solution and example LB solution and example **DM** solution and example Scalability evaluation

noa.zilberman@eng.ox.ac.uk