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Background

DB
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FA 1

Network device Server

Input

Growth of network connections & data

Growth of programmable data plane architecture

Programmable Network 

• Different hardware, same architecture

• Enable programmable control

• Easy and centralised control and modification 

Traditional Network

• Bound to specific hardware

• Limited programmability

• High barrier to modification 
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What Is In-Network Machine Learning? 

DB

C
E

FA 1

Network device Server

In-network ML refers to off load inference or entire ML processes
to the network.

In-Network
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Motivation: 3Ls

Location
• Along the path

• Already exist

• Shorter pathLatency

• Higher throughput 

• Early termination
Load
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What Is In-Network Machine Learning? 

General Machine Learning    vs In-Network Machine Learning

Local PC, Servers, …   Location Network Infrastructures

CPU, GPU, …  Device ASIC, FPGA, … (PISA)

C, Python, MATLAB, … Language P4

Training & Inference Manner Offline Training Online Inference

PISA

Page 4



Challenges

1. Limited mathematical operations

2. Limited memory

3. Limited data types 

4. Limited stages 

Resources on network devices are very limited compared to PC or 
servers.
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Use Case Configurations

Architecture Configurations

Model Configurations

Target Configurations

Data Loader

Model Trainer

Trainer

Converter P4 Generator

Common P4

Standard P4

Compiler 

Add/remove table entries

Tester

Load model

Sender/Receiver1

2

3

4

5

6

7

Servers & Control Plane Data Plane

Feature Extraction Mapped ML Model

Standard Switch Program: Packet Forwarding
A

Dedicated P4

Figure 2: The Planter f ramework components and work ow steps (∂ to º ).

Table 1 presents a partial snapshot of recent in-network

ML works, with more works discussed in this section. Two

types of solutions havebeen presented to tree-based models.

The rst type, presented in IIsy [64, 67] is referred to in this

paper as an encode-based (EB) solution (see§4.1). This so-

lution was also implemented in [63]. The second type, used

by pForest and SwitchTree [7, 36], is direct-mapping (DM)

(§4.3). BNN-based models are mainly based on the XNOR

Net[49]. With the help of XNORoperations and Hamming

Weight (Pop count), Siracusano [50, 54–57] and Qin [48]

realized binarized Multiple Layer Perceptron (MLP) in the

data plane. They mainly targeted SmartNICs, which have

less rigid limitations than switch ASIC. Other traditional ML

models, including SVM, NB, and KM, were introduced by

IIsy [? ], with multiple mappings per model. However, the

implementations areFPGA-based and arenot resourceopti-

mized. Clustreams[19] suggested adi erent KM mapping of

IIsy’s. Taurus [59] and IOI [70] use modi ed ASIC to realize

complex operations, and areoutside the scopeof this paper.

2.3 The Gap in In-Network ML

Although the development of in-network ML solutions is

promising, agap remainsbetween afunctional prototypeand

aplug-and-play solution on commodity devices. Asshown

in Table 1, most of the existing in-network ML works sup-

port only one type of ML model and one type of a target,

typically a SmartNIC or a software switch. A proposed algo-

rithm has only one model mapping solution (in most cases)

and is not compared with other in-network ML solutions.

Moreover, many solutions have no publicly available source

code. Wherean artifact was published [48, 64], only P4 code

isavailable. Aspectssuch asweight transformersaremissing,

and a lot of manual changes are needed when updating a

model.

Theseaforementioned limitations can bedivided into four

groups of challenges: high reproduction di culty, limited

model and target options, limited model size, and limited

comparison.

2.4 Planter Design Guidel ines

Planter aims to narrow the gap in production in-network

ML, and sets the following design guidelines:

Ease of use. Mapping ML models to programmable net-

work devices using P4 is not trivial. New targets, architec-

tures, and models may result in signi cant changes in (i)

trained models, (ii) P4 programs, (iii) mapped model parame-

ters to M/A tables or registers, and (iv) table loading process.

An easy-to-operate in-network ML end-to-end solution is

needed to handle the process and exibly adapt to changes

(§3.1).

Optimized models. Programmable network devices are

primarily designed for packet processing and forwarding.

They have limited memory and stages, and support a con-

strained set of mathematical operationsand data types. Map-

ped ML algorithms need to trade o model size and per-

formance to t on a network device. Thus, the framework

should support a wide range of prede ned and optimized

ML models. The resource overhead of the mapped ML al-

gorithms should be minimized as not to a ect mandatory

network functionality (§4).

Modulari ty. ML algorithms are emerging rapidly. New

architectures and software/hardware targets are reaching

themarket. The framework should beable to support new

ML algorithms, architectures, and targets. It should be easy

to update application scenarios. This calls for a modular

design with elements easily added, updated, or replaced,

independent of other framework components (§3.2 - §5).

3 PLANTER FRAMEWORK

Planter is a framework for o oading ML models into pro-

grammable network devices. The framework uses con gu-

ration les to identify the chosen ML model, architecture,

target, dataset, and usecase. It automatically generates, com-

piles, loads, and runs the mapped ML models on the target.

3.1 Work ow and Main Components

The work ow of Planter, shown in Figure 2, has seven steps.

In the rst twosteps, Planter loadsadataset ∂ and trainsit ∑.

Themodel ismapped to P4∏, using theselected architecture

and target. Generated P4 code iscompiled π and loaded to

thedata plane target ∫ . In step ª , tableentries and registers

are loaded through the control plane. In the nal step º , the

auto generated testing module runs a functionality test on

the target.

The generated data plane, shown in Figure 2 A , has three

functional parts: standard switching functionality, feature

3

1. Direct mapping solution

2. Encode based solution

3. Look up based solution
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extraction for ML models, and ML inference. The ML fea-

ture extraction and inference can be parallel to the standard

functionality (parser operation is merged).

The work ow is realized using ve components: Input

Con gurations, Data Loader, Model Trainer & Converter,

P4 Generator, and Model Compiler & Tester. The detailed

design of each component is described next.

Input con gurations. Planter is using con guration les

to drive its one-click operation. The con gurations can be

loaded from a le, or entered through an interactiveCLI.

Data Loader. The data loader loads datasets for training

purposes. It is use-case speci c, based on used features and

data format. All loaded data are stored in the same format.

Model Trainer & Converter. ML Training isconducted by

the Model Trainer, which drivesa standard training frame-

work. Trained models arenext mapped to the M/A pipeline

in the Model Converter. A software test is generated to test

the validity of the mapped model.

P4 Generator. There are three parts to the P4 Generator.

The Standard P4 Generator contains architecture-speci c

P4 code and is the main program that integrates the other

P4 codes. This is where the standard network functionality

resides. The Common P4 Generator contains the use case

speci c P4 code, such as bespoke feature extraction. The

Dedicated P4 Generator creates the model-related P4 code.

Model Compiler & Tester. The Model Compiler & Tester

aredeployed in the control plane. The Model Compiler gen-

erates bash scripts to compile, load, and run mapped ML

models. The Tester generates testing scripts and runs the

functionality test on the selected target.

3.2 Modular Framework Design

Planter isa modular framework. Modules are independent

and can be exibly and easily replaced. The framework sup-

ports many ML models, architecturemodels, target modules,

and usecasemodules. For navigation simplicity, modulesare

arranged in folders by type. This can be rearranged by users.

In addition to the above, Planter provides a set of common

functions, such as exact-to-LPM table conversion, which

can be used by other modules. More details areprovided in

Appendix B.

4 ML MODELSIN PLANTER

This section provides a detailed look into the Model Trainer

& Converter component (Figure 2 step ∑). Planter supports

a range of in-network ML algorithms, e.g., SVM, NB, DT,

RF, XGB, IF, KM, KNN, and NN. Among these implemented

algorithms, Planter also upgrades some previously proposed

implementations (e.g., DT, RF, and NB), and supports new

ML algorithms (e.g., XGB, IF, KNN, AE, and PCA). The mod-

ularity of the framework allows future support in Planter

of other types of in-network algorithms, as well as other

enhancements.

Types SVM DT RF XGB IF NB KM KNN PCA AE NN

EB G3 G3 G G2 3 G

LB 3 3 G2 3 3 G G

DM 3 3 3

Table 2: Three types of in-network ML models solu-

tions. Notation: G new or upgraded, 3 reproduced, 3 =

or G= = variations exist.

In Planter, ML algorithms mapping can be classi ed into

threetypes:encode-based(EB), lookup-based(LB),anddirect-

mapping (DM). Table 2 shows all the ML models supported

under these threeapproaches. EB solutions encode the fea-

ture space for algorithms based on input feature space parti-

tioning. LB solutions are based on lookup in tables of inter-

mediate results. DM approaches map the model directly into

the pipeline, using alternativeoperations or result approxi-

mation. This section introduces the details of one variation

of each model. All variations’ implementations can be found

in Planter’s repository [69].

4.1 Encode-Based Solutions

Classi cation algorithms essentially aim to nd borders in

a feature space, either the original or a mapped one. The

area con ned by a set of borders (partitions) is labeled as

a class. Algorithms use di erent methods to de ne their

borders. Someusecomplex functions, whileothersuselinear

functions for approximation. EB solutions mainly use linear

borders to slice the feature space with codes representing

each part of the area in the space.

code 2
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Figure 3: Methodology of EB solutions.

To describe the mapping of a general EB model, consider

the input features. To slice input features into classes, a typi-

cal method usesfeaturetablesand adecision table. Asshown

in Figure 3, based on a well-trained model, feature space

(e.g., two-dimensional space) is sliced into 6 areas (i.e., area
0 to area 5 ) by 5 partitions (i.e., partition Partition 1 to partition
Partition 5 ). To map this ML model to M/A pipeline, this input

featurespace uses two feature tables to record the mapping

4
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Encode based solution
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be replaced by simple codes-to-label look-ups in the nal

decision process.

4.1.4 Isolation Forest. Isolation Forest (IF) is an unsuper-

vised ensemble model based on RF [39]. To make the deci-

sion, thetotal number of branchesused in theforest decision

is compared to an anomaly threshold, as shown Equation

1, whereG is the input instance,⌘(G) is the path length, C

is the total number of training instance, and⇢(⌘(G)) is the

average⌘(G) of a collection of trees.

⇢(⌘(G)) −(2(;=(C− 1) +W) − 2(C− 1)/C);>620.5 (1)

EB IF (IF⇢⌫) uses a similar method to XGB⇢⌫ to build the

M/A pipeline. The main di erence between IF⇢⌫ and XGB⇢⌫
is in the M/A table generation process on top of Equation 1.
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Figure 6: KM work ow using EB solutions.

4.1.5 K-means. The EB KM (KM⇢⌫) labels the input based

on thedistancebetween thedatapoint andeach centroid [18].

The input featurespace thuscan bedivided into small pieces.

Figure 6 shows a KM⇢⌫ toy example in Planter, based on

Clustream’s [19] solution, which encodes the feature space

(2 dimensional) by using the Quadtree. In the higher dimen-

sional feature space, at each depth of the tree, the input =

dimensional featurespaceisdividedand labeled into2= equal

partswith thesameorder. TheKM⇢⌫ requires3⇥=bitscode

to represent each area when the maximum depth is3 . The

featurespace is split continuously until the tree reaches the

maximum depth or all vertices of the current unit belong to

one class. According to its tree-like splitting approach, all

these codes arestored in the ternary tables. Compared with

the EB tree models, the KM⇢⌫ requires preprocessing before

inference.

4.1.6 K-nearest Neighbors. The K-nearest Neighbor (KNN)

method splits the featurespace in a similar way to KM [⇢⌫] .

The di erence is that KNN uses the distance between the

vertices and : nearest neighbors instead of the centroid.

4.2 Lookup-Based Solutions

Many ML algorithms involve complex mathematical opera-

tionsbetween input featuresand the nal logic. Thesemathe-

matical operations arecommonly too complex to implement

in the data plane. Lookup-based solutions use M/A tables to

store the intermediate results of these operations and thus

are able to realize in-network ML in the data plane. Any ML

Feature n Table

Input: Fearure n value "&

Output: Feature n codeFeature 2 Table
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…
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…
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Inputs: " ! , " $ ,… , "&

Figure 7: Mapping methodology of LB solutions.

algorithms with a Decision Process can use the LB solutions

asshown in Figure7. In LB solutions, featuretablesstore the

mapping between each input feature value and intermediate

results. These intermediate values then do the remaining

basic mathematical operations, typically addition, as the -

nal stage logic. Multiplication operations between middle

results are not performed in the nal stage logic, and are

only supported through lookup tables.

4.2.1 Support Vector Machine (SVM). SVM maps inputs to

hyperplanes,anduseshyperplanestoseparatepairsof classes.

For a: classi cation task,SVM model requires< = : (: −1)/ 2

hyperplanes. Each hyperplane is equivalent to a vote. The

nal vote can be determined by counting the votes from all

hyperplanes and using logic or a decision table [13].

8>>>><

>>>>
:

F 1
1G1 + F 2

1G2 + . . .F =
1G= + 11 = 0

F 1
2G1 + F 2

2G2 + . . .F =
2G= + 12 = 0

. . .

F 1
<G1 + F 2

<G2 + . . .F =
<G= + 1< = 0

(2)

For LB SVM (SVM! ⌫), IIsy [64] proposed three similar solu-

tions by storing the intermediate result of each hyperplane.

The solutions aremainly di erentiated by the stored inter-

mediate results. Planter realizes the solution that has the

most similar structure with the general solution in Figure 7

and with the best scalability, by using = feature tables to

store the related middle results from all hyperplanes (e.g.,

Input: G8, Output F 8
1G8, F

8
2G8, . . .F 8

<G8). Each feature table

belongs to a logical stageand uses theaddition operation for

all hyperplanes (initialized by bias18). This method has an

optimal memory and stage consumption compared to other

IIsy approaches.

4.2.2 NaïveBayes(NB). For every set of inputs, NB calcu-

lates theposterior probability of each class [15]. Asshown in

6
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Planter’s modular framework design
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Models: SVM, DT, RF, XGB, IF, NB, KM, KNN, PCA, AE, NN

Architectures: PSA, v1model, TNA

Targets: Tofino, BMv2, P4Pi, Alveo FPGA

Datasets: Iris, UNSW, CICIDS, AWID3, KDD …

Use Cases: Anomaly Detection, Financial Transaction …

Zheng et al, Automating In-Network Machine Learning, 2022

Planter Framework
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Edge Computing, Financial Market Prediction…

Planter Use Cases

Anomaly Detection     IoT Traffic Classification     Load Balancing

1. Continuous learning

2. Runtime model update

3. Federated learning

IIsy                 Planter                                                              P4Pir                 FLIP4                                                              QCMP: SIGCOMM23 FIRA Workshop

1. In-network Q-Learning

2. QCMP Load Balancing

1. Models Mapping

2. Planter Framework

3. Packet/Flow/File Level
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Planter Results: Same Accuracy? 

Anomaly Detection Use Case
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Planter Results: System Performance

Anomaly Detection Use Case

Financial Market Prediction Use Case

Page 13



Planter Results: Scalability 
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Further Scale In-Network ML?  
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overheads are small [59]. The location of a switch a ects its

bene ts; A switch very close to the user is most useful for

datareduction, ultralow latency applications, and tomitigate

the e ects of distributed events (e.g., DDoSattacks). On the

other hand, a switch within a data center can support more

complex applications. For example, assuming that theswitch

is located after a load balancer, decrypted tra c can some-

times be assumed [3, 43], enabling in-network classi cation

in use-cases otherwise prohibited by tra c encryption.

Endpoint accelerator. The switch as an endpoint accel-

erator refers to using a switch purely for ML purposes. This

model is already in use for some applications, such as load

balancing [16]. Unlike other deployment scenarios, here the

switch adds space, power, and cost overheads.

Smart NIC. Smart NICs, DPU (e.g., NVidia BlueField)

and IPU (e.g., Intel Mount Evans) have been used in several

recent in-network classi cation works [53, 54, 65] due to

their improved resource availability (memory, encryption

modules) and exibility of programming (e.g., FPGA or SoC

based). While smart NICs bene t from the 3-Ls, it is to a

lesser degree. Their throughput is lower than a switch (e.g.,

400Gb/s vs 50Tb/s), the end-to-end latency is higher than a

switch (but lower than a CPU), and the location is further

from the data source. Asprevious works have shown [59],

there are still performance and power bene ts, but sub-par

to a switch ASIC.

Thesigni cant bene tsof the3-L’s lead usto focuson the

NativeSwitch deployment scenario. ClassIC also seamlessly

supports the Endpoint Accelerator model. Our solution is

applicable to Smart NIC architectures, like the Portable NIC

Architecture (PNA) [14], and was used for prototyping [8].

3 Hybrid Deployment

The resource-constrained nature of network devices means

that in-network ensemblemodelsaresmaller than full-grown

ensemble models, hence their ML performance may be sub-

par. For such cases, we propose a hybrid ML model that

can achieve close to optimum ML performance, while still

bene ting from the performance of in-network classi ca-

tion. A hybrid deployment employs a small in-network ML

model on the network device and a large ML model over

the end-point. The idea of applying a hybrid model to in-

network classi cation is inspired by techniques used in het-

erogeneous computing (e.g., ARM’s big.LITTLE) and from

pure-ML hybrid deployments.

In many ML ensemblemodels, such asRandom-Forest and

XGBoost, the ML model can provide a classi cation with a

corresponding con dence level – the probability that the

classi cation is correct [66]. In this paper, we adapt the ML

concept of a hybrid deployment [52, 61, 62], by implement-

ing a small in-network ensemble model (e.g., by limiting the

number of trees in an ensemble, or using a subset of fea-

tures [58]), and running a large ML model at the end-point.

To cope with the lower ML performance of a small in-

network ML model, classi cations by the small model are

considered valid only if their corresponding con dence is

above a given (high) threshold. Invalid classi cations by

the small in-network ML model (i.e., con dence below the

threshold) are forwarded for re-classi cation by the large

ML model deployed at the back-end.

Previous ML works [52, 62] have shown that most of the

queries in a given dataset can be classi ed by a small ML

model with high con dence level. Hence, a hybrid ML de-

ployment reducesboth theclassi cation latency and theload

over theback-end servers(by forwarding only “hard” queries

for re-classi cation), ascompared to a monolithic ML model

deployment at theback-end. In §8,wevalidate theseassump-

tions and demonstrate thebene tsusing two use-cases from

di erent domains, cyber-security and nance.

4 ClassIC Archi tecture

ClassIC automatically maps trained classi cation models

to programmable network devices, and in particular to o -

the-shelf switch ASIC. ClassIC uses common ML framework

for training, and converts its output to data plane code and

control plane code.
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Figure 2. The high-level architecture of ClassIC

The architectureof ClassIC, shown in Figure 2, has four

components: ML training, a mapping tool from a trained

model to a target network device, a data plane implementa-

tion on a hardware target, and a control plane component

for populating table entries. Additionally, the gureshows

the integration with a back-end, for hybrid deployments.

ClassIC uses host-based ML training based on standard

ML frameworks, such asscikit-learn, and allows for model

updates over time (see§8.9). Input datasets may be of di er-

ent formats (e.g., csv, pcap traces), and theoutput isexpected

as a pickle le.

ClassIC’smapping tool takes the output of the ML frame-

work, thetrained model, and maps it to aswitch-ASIC target.

The tool generates two components: an implementation of

the network switch data plane (P4 based), and the table en-

tries loaded by the control plane.

3
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Summary

Q: How to realize in-network ML mapping?

A: Three mapping solution: DM, EB, LB.

Q: How to easily map ML to the data plane?

A: Planter framework.

Q: How to realize personalized use cases?

A: By adding new modules.

Q: How to further scale ML model size?

A: Hybrid deployment & distributed deployment.
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