Exploiting Functional Connectivity Inference for Efficient Root Cause Analysis

Giles Winchester

34th Multi-Service Networks Workshop, Coseners, 2022

Network Management: Root Cause US Analysis

The Motivation of Our Work

- RCA algorithms can incur significant computational overheads.
- However, modern networks are:
- Large and complex
 - Algorithms must handle a large amount of data.
 - Expert knowledge is hard to obtain.
- Dynamic
 - Provided solutions must be able to update knowledge in a changing network with transient interactions [1].

Functional Connectivity Inference

• Pair-wise measure of short-lagged statistical dependency in log message activity [2].

How can we exploit Functional US Connectivity Knowledge for RCA?

- Pruning
- Community detection for parallelisation

Performance on Synthetic Data

- Network of Poisson processes split into Directed Acyclic Graphs.
- Causal structure influences event rate.

R. Jarrry, S. Kobayashi, and K. Fukuda. "A quantitative causal analysis for network log data.". In 2021 IEEE COMP-SAC, pp. 1437-1442

Performance on Synthetic Data

PC Algorithm: github.com/cpflat/pcalg THP Algorithm: github.com/huawei-noah/trustworthyAI

11S

Performance on Real World Data

- Events from some ~200 devices and ~20 event types over 12 days.
- Curated ground-truth causality between types.
- Repurposed the dataset

Performance on Real-World Data

Conclusion

• Summary

- We present a framework for exploiting Functional Connectivity to aid efficient RCA.
- Functional knowledge is inferred without requirement for expert-derived domain knowledge.
- The approach shows promise on both synthetic and real-world datasets.

Thank you for listening!