Energy-Efficient Orchestration of Metro-Scale 5G Radio Access Networks

Rajkarn Singh, Cengis Hasan^{*}, Xenofon Foukas⁺, Marco Fiore⁺, Mahesh Marina, Yue Wang^{*} The Univ. of Edinburgh, ^{*}Univ. of Luxembourg, ⁺Microsoft, ⁺IMDEA, ^{*}Samsung UK

Coseners MSN'21

1st July 2021

*Presented at IEEE INFOCOM 2021

RAN Energy Consumption Problem

Overprovisioning

- 1. Traffic load varies with time
- 2. Server capacity is greater than demand

RAN Energy Consumption Problem

Overprovisioning

- 1. Traffic load varies with time
- 2. Server capacity is greater than demand
- 3. At lower traffic, static energy incurs huge costs
- 4. Leads to inefficient resource utilization

Time

RAN Energy Consumption Problem

Overprovisioning

- 1. Traffic load varies with time
- 2. Server capacity is greater than demand
- 3. At lower traffic, static energy incurs huge costs
- 4. Leads to inefficient resource utilization

Time

Need advanced measures to perform optimal resource orchestration

Our Contributions

Realistic multi-tier cloudified RAN model

Comprehensive energy model and problem formulation

A distributed and scalable solution: GreenRAN

Evaluation with metro-scale real world dataset

Our Contributions

Realistic multi-tier cloudified RAN model

Comprehensive energy model and problem formulation

A distributed and scalable solution: GreenRAN

Evaluation with metro-scale real world dataset

Our Contributions

Realistic multi-tier cloudified RAN model

Comprehensive energy model and problem formulation

A distributed and scalable solution: GreenRAN

Evaluation with metro-scale real world dataset

Energy Model

Challenges

NP hard

- Integer Quadratic Program

Scale

- Huge parameter space

Centralized

- Edge and Cloud variables are inter-dependent

Our Contributions

Realistic multi-tier cloudified RAN model

Comprehensive energy model and problem formulation

A distributed and scalable solution: GreenRAN

Evaluation with metro-scale real world dataset

Divide & Conquer Paradigm

1. Lagrangean Relaxation

Divide & Conquer Paradigm

- 1. Lagrangean Relaxation
- 2. Per edge formulation

Divide & Conquer Paradigm

- 1. Lagrangean Relaxation
- 2. Per edge formulation
- 3. Simulated Annealing

Our Contributions

Realistic multi-tier cloudified RAN model

Comprehensive energy model and problem formulation

A distributed and scalable solution: GreenRAN

Evaluation with metro-scale real world dataset

Experimental Setup

vRAN Configuration

- Metro-scale real world traffic dataset
- **450** RUs
- 18 Far Edge Clouds
 - 15 physical servers per Edge Cloud
- **1** Telco Cloud
 - 30 servers per Telco Cloud

Benchmarks

- D-RAN
 - All processing in DUs at Far edge site
- Greedy
 - Maximum processing at CU in Telco cloud
- SotA
 - Only considers the processing cost

Energy Consumption

- GreenRAN
 - 25% better than SotA
 - 42% better than traditional D-RAN
- D-RAN has fewer multiplexing opportunities
- Greedy offloading to cloud is not optimal
- SotA incurs lesser processing cost
 - But higher migration cost

Conclusion

Optimizing energy consumption is more challenging with advanced architecture

We presented a latest vRAN model, realistic energy model considering migration costs

Our framework, GreenRAN, is a distributed, scalable and highly efficient solution

Results show 25% improvement over SotA and 42% over D-RAN

Thank You