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• Recent advances in networking such as software-defined networking 
(SDN), network function virtualization (NFV), and programmable data 
p lanes  have introduced more f lex ib i l i ty  of  automat ion  in 
communication and data networks.

• Technical developments toward 5G and B5G of mobile networks are 
quickly embracing a variety of deep learning (DL) algorithms as a de 
facto approach to help tackle the growing complexities of the network 
problems.

•  However, the well-known vulnerability of the DL models to the 
adversarial machine learning (ML) attacks can significantly contribute 
to broadening the overall attack surface for 5G and beyond networks.
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Introduction
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Attack Vectors



• In this work, we present a cautionary perspective on the use of AI/ML in the 5G 
context by highlighting the adversarial dimension spanning multiple types of ML 
and support this through three case studies.
• We also discuss approaches to mitigate this adversarial ML risk, offer guidelines 
for evaluating the robustness of ML models, and call attention to issues 
surrounding ML oriented research in 5G more generally.
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Contributions



Adversarial examples
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“Adversarial examples are inputs to ML models that an attacker has intentionally 
designed to cause the model to make a mistake at test time.” 
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Attacking Supervised ML-Based 5G Applications
• Automatic modulation classification is a critical task for intelligent radio receivers. The conventional 

maximum-likelihood and feature-based solutions are often infeasible due to the high computational overhead 
and domain expertise that is required.

• To make modulation classifiers more common in modern 5G and B5G networked devices, current approaches 
deploy DL to build an end-to-end modulation classification systems capable of automatic extraction of 
signal features in the wild.

• We trained a convolutional neural network (CNN) driven SL-based modulation classification model on a 
well-known GNU radio ML RML2016.10a dataset that consists of 220,000 input examples of 11 digital and 
analog modulation schemes (AM-DSB, AM-SSB,WBFM, PAM4, BPSK, QPSK, 8PSK, QAM16, QAM64, CPFSK, and 
GFSK) on the signal-to-noise ratio (SNR) ranging from -20 to 18 dB [1].

• To show the feasibility of an adversarial ML attack on the CNN-based modulation classifier, we make the 
following assumptions.
• We consider the white-box attack model where we assume that the adversary has a complete 

knowledge about the deployed modulation classifier.
• Goal of the adversary is to compromise the integrity of the CNN classifier leading to a significant decay 

in the classification accuracy, which is the measure of the success of the adversary.
1. T. J. O’Shea and N. West, “Radio machine learning dataset generation with GNU radio,” in Proc. GNU Radio Conf., vol. 1, 2016.
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Attacking Supervised ML-Based 5G Applications
• To craft the adversarial examples to fool the CNN classifier, we use the Carlini and Wagner (C&W) attack [1] for 

each modulation class by minimizing the L2 norm on the perturbation ∂, such that when the perturbation ∂ is 
added to the input x and sent to the CNN-based modulation classifier C it misclassifies the input x.

1. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Proc. IEEE Symp. Secur. Privacy, May 2017 pp. 39–57.

A distinct drop in the performance of
the modulation classification after the adversarial
attacks indicates the brittleness of deep supervised

ML in 5G and B5G applications.
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Attacking Unsupervised ML-Based 5G Applications
• Deep autoencoder based communication model is seen as a 

viable alternative to the dedicated radio hardware in the 
future 5G and beyond networks [1,2].

• We assume the model is subjected to an additive white 
Gaussian noise (AWGN) channel and apply the parameter 
configurations provided in [3].

• To show the feasibility of an adversarial ML attack on the 
deep autoencoder-based communication model, we make the 
following assumptions.
• We assume a white-box setting.
• We further assume that the autoencoder learns a 

broadcast channel. 
• The goal of the adversary is to compromise the integrity 

of channel autoencoder and the success of the adversary 
is measured by the elevated BLER with improving SNR per 
bit (Eb/N0).

1. T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention,” in Proc. IEEE Int. Symp. Signal Process. Inf. Technol., 2016, pp. 223–228.
2. B. Hilburn, T. J. O’Shea, T. Roy, and N. West, “DeepSig:Deep Learning for Wireless Communications.
3. T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, Dec. 2017.
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Attacking Unsupervised ML-Based 5G Applications
• We take the following two-step data-independent approach to craft adversarial examples for the channel 

autoencoder.
1. Sample the Gaussian distribution randomly (because the channel is AWGN) and use it as an initial 

adversarial perturbation ∂.
2. Maximize the mean activations of the decoder model when the input of the decoder is the perturbation 

∂.
• This produces maximal spurious activations at each decoder layer and results in the loss of the integrity of 

the channel autoencoder. 

 The block error rate (BLER) versus Eb/N0 curves indicates that 
adversarial ML attack does not only deteriorate the model’s 

performance but also leads to similar or worse performance than with 
a known jamming attack.
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Attacking Reinforcement ML-Based 5G Applications
• We performed the adversarial ML attacks on an end-to-end DRL autoencoder with a noisy channel 

feedback system [1]. The end-toend training procedure involves the following.
• The RL-based transmitter training by a policy gradient theorem to ensure that the intelligent transmitter 

learns from the noisy feedback after a round of communication.
• SL model-based receiver training to train the receiver as a classifier.

• The considered threat model for this case study is given as follows:
• We choose a realistic black-box setting where the adversary does not know the target model. We also 

assume that the adversary can perform an adversarial ML attack for “n”-time steps.
• The goal of the adversary is to compromise the performance of the DRL autoencoder with noisy feedback 

for a specific time interval. The success of the adversary is measured by the degradation in the decoder’s 
performance during the attack interval.

1. M. Goutay, F. A. Aoudia, and J. Hoydis, “Deep reinforcement learning autoencoder with noisy feedback,” in Proc. 17th Int. Symp. Model. Optim.Mobile, Ad Hoc, Wireless Netw., 2019, pp. 1–6.
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Attacking Reinforcement ML-Based 5G Applications
• We exploit the transferability property of the adversarial examples, which states that adversarial examples 

compromising an ML model will compromise other ML  models with high probability if the underlying data 
distribution is same between two victim models.

• We transfer the adversarial examples crafted in the previous case study and measure the average accuracy of 
the receiver. 

• We run the DRL autoencoder with a noisy feedback system for 600-time steps (one timestep is equal to one 
communication round) and perform the adversarial attack between 200 and 400-time step window. 

A clear drop in the performance of the receiver during the attack 
indicates the success of the adversary in compromising the DRL 

autoencoder-based end-to-end communication system in future mobile 
networks.



Solutions for Adversarially Robust ML 

Qayyum, A., Usama, M., Qadir, J., & Al-Fuqaha, A. (2020). Securing connected & autonomous vehicles: Challenges posed by adversarial machine learning and the way forward. IEEE Communications Surveys & Tutorials, 22(2), 
998-1026.
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Conclusions

• Security and privacy are uncompromising necessities for modern and future global networks 
standards such as 5G and B5G, and accordingly fortifying it to thwart attacks and withstand the 
rapidly evolving landscape of future security threats is of vital importance.

• This work specifically highlights that the unvetted adoption of DL-driven solutions in 5G and B5G 
networking gives rise to security concerns that remain unattended by the 5G standardization 
bodies, such as the 3GPP. 

• We hope that our work will motivate further research toward “telecomgrade ML” that is safe and 
trustworthy enough to be incorporated into 5G and B5G networks, thereby power intelligent and 
robust mobile networks supporting diverse services including mission-critical systems.
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