Fast & Private
Spatial Range Query

Abhirup Ghosh, Jiaxin Ding, Rik Sarkar, lJie Gao

Postdoc @ Imperial

Spatial Sensing

* Densely deployed sensors collect events with locations
e Events of traffic incidents, footfall, occupancy, etc.
* Analyzing these events are important across applications

Counting range query

* Ranges on given spatial subdivision — map / administrative divisions
* Count events in the range

* 1D: Along a path

e 2D: Within a region

o 7
closed ?V’ // :
{ T

- /\"ﬁ ; | /
A=l
g,

Wy

)

/1
=9
@

Roand ae & 8- ,
/ TEASIN O|F Dg ET Os / /

ol f 3\ s &7 Va4
L Sl 30 St Mary Axe
-~/ Bank@Engiand /Z @ @ Gherkin)

. "‘/ [Museum@\> '@R-.N HIL L ®<
,:; %Lpadvnhﬂ\) \ [

- Q@ N\ ’Q
= J{fl":f:;;n‘\‘,;q;' - = =
| T i @ ATy = ‘
A ansion!@?;.)’ N B OURN)
CBAYNARD S 80 N K
‘ R N @ orrFenchurch Streg
= D < L/

f 1}
. _Cannon Stree

§
/

Challenges - efficiency

* Too many roads — 2.7M roads in California

* KD-tree / Quad tree do not work for path queries and non-rectangular
ranges

Challenges — user privacy

* Location data is sensitive
 Anonymous and aggregate counts can reveal sensitive information
* Suppose a taxi company publishes aggregate drop-offs / street

 Taxi drop-off locations correlate to home locations

50 drop-offs

Our work

* Problem: Answer spatial range queries with privacy and efficiency

e Support un-bounded # of queries

 Planar graph to model spatial domain (road = edge; crossing = node)
* Hierarchical data structures for O (logn) query time [n = # of nodes]

* Differential Privacy with polylogarithmic error

1D queries are along
shortest paths

Differential Privacy for spatial range queries

* Protect occurrence of an event

* Find exact range count then add noise
* Noise « possible # query ranges.

* # shortest paths 0(n?) - large error

* Local differential privacy also adds too much noise, 0(\/7’1)

/» Output a sample

Mean= Exact count

Partial-sum in 1D —idea behind our method

* Build binary tree and store partial sums at tree nodes

* A range query adds noises at respective nodes

* A node can be part of O(log n) canonical ranges = noise « log n
* Any query can be answered by adding O(log n) p-sums

* Achieves differential privacy with 60(logl'5 n) error

Chan, et.al. Private and continual release of statistics, 2011

Our method: p-sum for planar graphs

* There are 0(n?) shortest paths — cannot build p-sum trees on all
* Select a few shortest paths as canonical paths
* Build p-sum trees on canonical paths

* Build two hierarchies
* Planar separator hierarchy
* Random sampling hierarchy

Planar separator hierarchy

* A shortest path can divide a planar graph into two balanced parts
e Efficient ways exist to find a separator (Classical result from Tarjan)
 Divide recursively — build separator hierarchy

e Separator paths are canonical paths

10

Random sampling hierarchy at separator nodes

 Similar to skip list in graphs.
e All nodes are at level O

* Independently promote a node to next level with
probability %2

* Continue iteratively

* Canonical paths: shortest paths between nodes
at same level

11

The final data structure

* Two types of canonical paths —
* Type I: Separator paths
* Type II: paths between same random level

* Build p-sum trees on all canonical paths
* Pre-compute noise samples at p-sum nodes
* Given a query path, find canonical (noisy) p-sums

12

Evaluate on taxi pickups event in Porto

* The road network graph is from openstreet map

e Range query error increases with decreasing ¢ (better privacy)

* Queries are fast —90% queries take < 1 msec

CDF

1.0

0.8

0.6

0.4+

0.2+

0.0

- — £=0.1
e=1.0
— £=10.0
105 103 10-1 101

Range query error

CDF

1.0

0.81

0.61

0.41

0.21

0.0

1075 10 103 1072 107!
Query time (sec)

13

Summary

* Fast and Private range query on Spatial data

* Select 0(n log? n) shortest paths as canonical paths s.t. —
* Any shortest path is a concatenation of O(log n) canonical paths
* An edge is part of at most O(log* n) canonical paths

» Differential privacy with O(log*> n) error vs O(4/n) in local DP

e Extends to 2D non-rectangular query ranges using differential form
* Adapts to distributed processing

14

