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Motivation

GROWTH OF THE IoT

‘THE NUMBER OF CONNECTED DEVICES WILL EXCEED 50 BILLION BY 2020

BILLIONS OF DEVICES
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Figure: Number of loT devices is rising
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Figure: Apparently a part of Mirai source code
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Motivation
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Figure: How vulnerabilities are exploited
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Motivation

Most Hacked Devices

Security Camera Systems (47%)
Smart Hubs (15%)
NAS (12%)

4.0%

Printers (6%)
Smart TVs (5%)
IP Phones (4.3%)

Figure: A pie chart
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Motivation
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Figure: A bar chart
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Effective loT Device Identification at the Edge Mot

LMotivation

= |oT are penetrating our households and the number is ever rising

= |oT are source of large number of security threats

= They would benefit from automated management

= This requires identification of devices

= The most natural way is to identify them by their network traffic at
the home router
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Research Question

» Which ML models are best suited for this task?
» Once trained, do these models stay accurate?
» s it feasible to run inference of the models at the edge?

» If needed, can these models be trained at the edge?
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Test-beds

» Large Test-bed - 43 devices

» Small Test-bed - 9 devices
(a subset)

All devices were split into 6 cate-
gories: Surveillance, Media, Au-
dio, Hub, Appliance, Home Au-
tomation
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Datasets

Two types of data were collected from both test-beds:
» Idle, i.e. no interaction with test-beds (3 weeks)

> Active, i.e. automated interaction with test-beds (1 week)
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Evaluation

> Five different types of models:

| 4
>
>
>
>

Fully Connected Neural Network
LSTM Network

1D Convolutional Network
Random Forest Classifier
Decision Tree Classifier

» Four different groups of models:
» One model for all devices
» One model per device
» One model for all categories
» One model per category
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Figure: Fully Connected Network
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(a) Long short-term memory model
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(b) 1D convolutional model
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Effective loT Device Identification at the Edge g n u

= Models performance is rather similar

= The accuracy of the models decrease over time

= The longer the training time, the longer the model remains accurate

= None of the models can reliably classify devices more than 2 weeks
ahead

= Retraining of models is necessary
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Figure: Average F; score of various models using a training window of
various sizes (1-7) over the prediction of up to 7 days ahead.
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Effective loT Device Identification at the Edge

= RFC & DTC models slightly outperform neural network based
models

= Performance of neural network based models is virtually the same

= Device classification is less accurate than category classification

= Single multi-classification model outperforms multiple binary
classification models
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(a) Large Test-bed (b) Small Test-bed

Figure: Average F; score of models trained on 7 day window of idle data
and tested on active data of the large and the small test-bed.
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= Models trained on an idle dataset are not accurate on active data

= Models trained on one test-bed are less accurate on the other
test-bed

= Models updated with data from one test-bed increase accuracy on
the same test-bed but have very small impact on the other test-bed

= Models need to be updated with local data
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What Can be Done?

» Models need to updated
frequently

> Models need to be updated
with local data

» Model inference must be run
at the edge

» Can a home router, aka
Raspberry Pi 4, do it?
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(a) Fully connected model (b) LSTM model
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(c) 1D conv. model

Figure: Average training time on RPi4 with different numbers of frozen
layers (0, 1, 2 or 3 layers).
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Effective loT Device Identification at the Edge

= Model retraining is feasible at the edge

= The improvement in training time largely depends on the type and
the architecture of the neural network

= Layer freezing more than halves the training time for LSTM and
ConvlD models

= Fully connected layer freezing reduces the training time modestly
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Figure: Average inference time on RPi4 of 100K samples using
TensorFlow Lite.
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]

= Results are similar across the all groups of models and model type

= The inference time for LSTM models is considerably larger

= Fully connected model is the fastest

= Inference time of 1D Convolutional model is double the time of FC
model
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Conclusion
P All models lose accuracy over time
» Models need to be updated with local data

> It is feasible to run model inference at the edge
» It is feasible to update the models at the edge
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Is There A Way | Can Help?
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Is There A Way | Can Help?

Would you like to know how chatty your loT devices are?

Roman Kolcun et al.
Effective loT Device ldentification at the Edge



Imperial College
London

Is There A Way | Can Help?

Would you like to know how chatty your loT devices are?
Would you like to help researchers to collect data?
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Is There A Way | Can Help?

Would you like to know how chatty your loT devices are?
Would you like to help researchers to collect data? (or not)
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Is There A Way | Can Help?

Would you like to know how chatty your loT devices are?

Would you like to help researchers to collect data? (or not)

Good news: we will be running an experiment where you can
install a Raspberry Pi 4 at your home which will act as a router for
smart devices and send TCP/UDP headers (i.e. no payload) to our
server.
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Is There A Way | Can Help?

Would you like to know how chatty your loT devices are?

Would you like to help researchers to collect data? (or not)

Good news: we will be running an experiment where you can
install a Raspberry Pi 4 at your home which will act as a router for
smart devices and send TCP/UDP headers (i.e. no payload) to our
server.

Anyone interested should contact me at
roman.kolcun@imperial.ac.uk or any of the aforementioned
researchers.
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