
Repeatable research with
open source platforms

Andrew W. Moore, PhD CEng
Computer Laboratory

University of Cambridge

1

http://www.cl.cam.ac.uk/~awm22/slides/2017-coseners.pptx

Reproducibility in Science

• Validate Correct Results
supporting the conclusions

and
compare with new ideas

• Invalidate Incorrect results
refuting the conclusions

and
improve and refine

2

Reproducibility as validation

3

Reproducibility as invalidation

4

Reproducibility as invalidation

5

What do Linux apache MySQL Firefox BSD BIND

have in common with the resurgence in
Software Defined Networking (SDN)?

6

What do Linux apache MySQL Firefox BSD BIND

have in common with the resurgence in SDN?

Openly available source and open standards

7

And not just an implementation…

• OFLOPS – the OpenFlow performance tester
• OFtest – OpenFlow compliance tester

• OvS – software only implementation

• Numerous OpenFlow controllers:
From Ryu to OpenDaylight

10

Each a stabile platform
• enabling extension, and
• a process for adopting contributions and improvements

11

Because network research, and education
needs a good platform

www.netfpga.org

12

So what is NetFPGA?
NetFPGA = Networked FPGA platform

A line-rate, flexible, open networking
platform for teaching and research

MIPS, RISC-V, Blueswitch, EMU, P4 FPGA…
13

Traffic Control – The Next Gen

• Latency injection – ns to seconds granularity
• Different latency distributions
• Rate control
• Rate limiting
• Shaping

• Per flow support

• Powered by

14www.lowlatencylab.org/tools/gadget/

http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/gadget/

15

16www.lowlatencylab.org/data/pam2017/

Measure the Application

• Packet Size
• Inter-Packet Gap
• Burst Size
• Is congestion likely?

• Bandwidth – at different granularities

• Powered by

17www.lowlatencylab.org/tools/gadget/

http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/gadget/

Bandwidth – 10ms granularity
Lasso (ML) Memcached

Apache

18

Bandwidth – 100us granularity
Lasso (ML) Memcached

Apache

19

• The network library for Kiwi
• Compiling .Net programs

– To x86
– To simulation environment
– To multiple FPGA targets

Emu : Accelerating Network Services

20http://www.cl.cam.ac.uk/research/srg/netos/projects/emu/

pcie-bench: an open source tool for
benchmarking PCI Express
there is a limited understanding of PCIe functionality,
nor the trade-offs that must be made to get best-
performance from PCIe systems

• pcie-bench tool open source available
• It builds on NetFPGA and Netronome boards

 400

 500

 600

 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700

 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(n
s)

Transfer Size (Bytes)

LAT_RD (NFP6000-HSW)
LAT_RD (NetFPGA-HSW)

LAT_WRRD (NFP6000-HSW)
LAT_WRRD (NetFPGA-HSW)

21www.lowlatencylab.org/tools/pcie-bench/

http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/gadget/

n Open source, RISC based SoC architectures
n With high performance networking capabilities
n RISC-V – RISC-V ISA soft processor, Linux OS
n CHERI – 64bit MIPS soft processor, BSD OS

NetSoc: NetFPGA + Open Source Processors

22https://arxiv.org/pdf/1612.05547.pdf

What can we do?

• Raise the bar on acceptable research
• Insist on the artefacts being published
• Insist on the results being available
• Insist on the experiments being repeatable
• Accept reproduction studies

• Enable Research Repeatability

23

Lead by example

24

Lead by example

Moore & Zuev 2005, we published the dataset

https://www.cl.cam.ac.uk/research/srg/
netos/projects/archive/nprobe/data/pap
ers/sigmetrics/index.html

In a form that was preserved anonymity and
1. Enabled reproducibility,
2. Enabled comparison against new algorithms, and
3. Actively encouraged others to create their own

datasets

25

Lead by exampleDraft of 01/10/2014, 17:49 – please do not distribute.

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor Malte Schwarzkopf Ionel Gog Robert N. M. Watson
Andrew W. Moore Steven Hand Jon Crowcroft

University of Cambridge Computer Laboratory

Simplicity is the shortest path to a solution.
– Ward Cunningham

Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications. To
mitigate network interference, QJUMP applies Internet
QoS-inspired techniques to datacenter applications. We
assign each application to a latency sensitivity level (or
class)—packets from higher levels are rate-limited in the
end host, but once allowed into the network can “jump-
the-queue” over packets from lower levels. In settings
with known node counts and link speeds, QJUMP can
support service levels ranging from strictly bounded la-
tency (but with low rate) through to line-rate throughput
(but without any latency guarantees).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300⇥, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction
Many datacenter applications are sensitive to tail laten-
cies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can
cause queueing that extends memcached request latency
tails by 85⇥ the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop.
Of course, multiple instances of memcached may still
interfere with each other, causing long queues or incast
collapse [10]. However, if each memcached instance can
be appropriately rate-limited at the origin, this too can be
mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single
authority (at least up to the hypervisor or OS). In this
new environment, we can enforce a system-wide policy,
and calculate specific rate-limits which take into account
worst-case behavior, ultimately allowing us to provide a
guaranteed bound on network latency [27, 28].

QJUMP implements these concepts in a minimal rate-
limiting Linux kernel module and application utility.
QJUMP has four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].

1

26

Lead by exampleDraft of 01/10/2014, 17:49 – please do not distribute.

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor Malte Schwarzkopf Ionel Gog Robert N. M. Watson
Andrew W. Moore Steven Hand Jon Crowcroft

University of Cambridge Computer Laboratory

Simplicity is the shortest path to a solution.
– Ward Cunningham

Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications. To
mitigate network interference, QJUMP applies Internet
QoS-inspired techniques to datacenter applications. We
assign each application to a latency sensitivity level (or
class)—packets from higher levels are rate-limited in the
end host, but once allowed into the network can “jump-
the-queue” over packets from lower levels. In settings
with known node counts and link speeds, QJUMP can
support service levels ranging from strictly bounded la-
tency (but with low rate) through to line-rate throughput
(but without any latency guarantees).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300⇥, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction
Many datacenter applications are sensitive to tail laten-
cies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can
cause queueing that extends memcached request latency
tails by 85⇥ the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop.
Of course, multiple instances of memcached may still
interfere with each other, causing long queues or incast
collapse [10]. However, if each memcached instance can
be appropriately rate-limited at the origin, this too can be
mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single
authority (at least up to the hypervisor or OS). In this
new environment, we can enforce a system-wide policy,
and calculate specific rate-limits which take into account
worst-case behavior, ultimately allowing us to provide a
guaranteed bound on network latency [27, 28].

QJUMP implements these concepts in a minimal rate-
limiting Linux kernel module and application utility.
QJUMP has four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].

1

http://www.camsas.org/qjump

27

Lead by exampleDraft of 01/10/2014, 17:49 – please do not distribute.

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor Malte Schwarzkopf Ionel Gog Robert N. M. Watson
Andrew W. Moore Steven Hand Jon Crowcroft

University of Cambridge Computer Laboratory

Simplicity is the shortest path to a solution.
– Ward Cunningham

Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications. To
mitigate network interference, QJUMP applies Internet
QoS-inspired techniques to datacenter applications. We
assign each application to a latency sensitivity level (or
class)—packets from higher levels are rate-limited in the
end host, but once allowed into the network can “jump-
the-queue” over packets from lower levels. In settings
with known node counts and link speeds, QJUMP can
support service levels ranging from strictly bounded la-
tency (but with low rate) through to line-rate throughput
(but without any latency guarantees).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300⇥, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction
Many datacenter applications are sensitive to tail laten-
cies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can
cause queueing that extends memcached request latency
tails by 85⇥ the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop.
Of course, multiple instances of memcached may still
interfere with each other, causing long queues or incast
collapse [10]. However, if each memcached instance can
be appropriately rate-limited at the origin, this too can be
mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single
authority (at least up to the hypervisor or OS). In this
new environment, we can enforce a system-wide policy,
and calculate specific rate-limits which take into account
worst-case behavior, ultimately allowing us to provide a
guaranteed bound on network latency [27, 28].

QJUMP implements these concepts in a minimal rate-
limiting Linux kernel module and application utility.
QJUMP has four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].

1

http://www.camsas.org/qjump

28

29

Enable others

Cost Flexibility Resolution Line Rate

DPDK,
SW tools () ()

()

Reproducible research needs,
widely available test-equipment

Enable others

Cost Flexibility Resolution Line Rate

DPDK,
SW tools () ()

()

Reproducible research needs,
widely available test-equipment

30

Open-Source Network Tester

§ Open source hardware and software platform for network
test, publicly available

https://osnt.org/
https://github.com/NetFPGA/OSNT-Public/wiki

§ Low cost, low jitter, flexible to update, scale-out,
no CPU usage, nano-second resolution measurement

A platform for testing powered by

31

https://osnt.org/
https://github.com/NetFPGA/OSNT-Public/wiki

What can we do?

• Raise the bar on acceptable research
• Insist on the artefacts being published
• Insist on the results being available
• Insist on the experiments being repeatable
• Accept reproduction studies

• Enable Research Repeatability
and then Just Do It! Everytime.

• Open-source (research) platforms work!
Build on platforms, and support platforms

32

What is the platform for machine-
learning in networking?

Is the lack of an active-optical
network due to a lack of platform?

(no one can make up their mind what it looks like...?)

What is the next software-platform to
displace the current one?

(So what is Ion Stoica’s next project J...?)

33

Acknowledgements

34http://www.cl.cam.ac.uk/~awm22/slides/2017-coseners.pptx

