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Modern Video Streaming

Just lots of HTTP requests for video chunks.
Client picks chunks, so as to adapt rate.
Server is pretty dumb — just has to go fast.
HTTP/1.1 persistent connections.

TLS has become important (YouTube is 95% TLS).

More than 50% of Internet traffic.

Important to make good use of expensive
hardware. How fast can you go?
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New iPlayer setup, Dec 2015:

* nginx on Linux, 24 cores on two Intel Xeon E5-2680v3
processors, 512 GB DDR4 RAM, 8.6TB RAID array of SSDs.

* 20Gb/s per server. <Not so impressive!



NETFLIX

 FreeBSD, but tweaked.

— Asynchronous sendfile()

* Non-blocking zero copy from disk buffer cache to Net.

— VM scaling
* Fake NUMA domains to avoid lock contention
* Proactive clearup of disk buffer cache.



Lets Do Some Experiments

e 8 core server, 2x 40Gb/s NICs, 4x NVMe SSDs

* Synthetic workload, middlebox adds delay to
reverse path to make RTT realistic.

* Theoretical limits: about 73Gb/s

Compare:
— Stock FreeBSD/nginx

— Netflix version of FreeBSD/nginx
e production codebase in autumn 2016
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Encryption Problem

sendfile():

— Zero copy from disk buffer cache
TLS:

— Different encrypted stream per user.
Sendfile() and TLS are incompatible!

* Conventional TLS stack gave Netflix 8.5Gb/s

* Netflix implemented kernel stream encryption for
encrypted sendfile.

— But can’t be zero copy anymore.
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What’s happening?
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The stack is too asynchronous.
Data keeps getting flushed from the LLC, and re-loaded.
System is bottlenecked on memory.




Production Netflix workload

192GB of RAM as disk buffer cache.
Only gets a 10% hit ratio.

Modern NVMe SSDs have low latency.
Modern Intel CPUs DMA directly to the L3 cache.

Can we eliminate the disk buffer cache
completely, and fetch everything from SSD on
demand?



ldeal Stack

To achieve this, we must:

 Fetch on demand from the SSD when TCP needs data.

 Assoon as the SSD returns data, process it to
completion and DMA it to the NIC.




Solution Outline

1. ATCP ACK arrives, freeing up congestion
window.

2. Trigger storage stack to request more data from
SSDs to fill that congestlon wmdow

Atlas a complete user-space stack
e Netmap to handle the network
* User-space TCP.
* Implemented diskmap, storage equivalent of netmap
» Maps NVMe buffer rings to userspace and
manages submission and completion queues.




Atlas vs Netflix, unencrypted content

15% better
throughput than
Netflix when cache
hit ratio is low.

Netflix needs 8
cores, Atlas only
needs 4
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Still some memory traffic though

If we're lucky: If we’re unlucky:
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Netmap doesn’t provide a good low-delay fine-grained
way to handle DMA completions.

Can’t reuse buffers fast enough, and this adds some cache
pressure.




Atlas vs Netflix, Encrypted Content
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Atlas TLS memory usage

With no premature When some other DMA
cache eviction: causes cache eviction
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To operate entirely from the LLC, we’d need to recycle
netmap buffers faster, using a LIFO stack for free buffers.
We’d need more control over DDIO policy (newer CPU!)




Summary

* Netflix addressed all the low-hanging fruit
— Very fast, but now bottlenecked on memory

e Atlasis a specialized stack
— Puts SSD in TCP control loop

— Immediately processes disk reads to completion and
transmits.

— 50% throughput improvement with encrypted content,
close to 50% reduction in memory reads

* Netflix inspired by Atlas

— Now experimenting with how to directly trigger encryption
off of disk DMA completions in their FreeBSD stack.



