Disk | Crypt|Net
High performance video streaming

llias Marinos, Robert Watson (Cambridge),
Mark Handley (UCL),
Randall Stewart (Netflix)

Modern Video Streaming

Just lots of HTTP requests for video chunks.
Client picks chunks, so as to adapt rate.
Server is pretty dumb — just has to go fast.
HTTP/1.1 persistent connections.

TLS has become important (YouTube is 95% TLS).

More than 50% of Internet traffic.

Important to make good use of expensive
hardware. How fast can you go?

Previous Home Next

BBC Digital Media Distribution: How we
improved throughput by 4x

Alistair Wooldrige
) owid Senior Software Engineer

Staff from e BEC's ondne and lechnology
Tagoed with. Media Distribution foarms talk about B8C Onine, BEC Player
B8C Red Bution and the BBC's agtal
sarvicos. The blog is reactively moderated

I3 COMMENTS
Your host i Robart Shoety

. Folow Internet Blog on Teiter
HAC Dl Mecha Distration fas Seon wovking 40 delvey more Mroughoud from e caching 'oq

nfrazructume. Serwr Software Engineer Alstar Wookinge expliins how ¥ leam agnosed poos Biog !
Perionmnance with exisiag sofware and wdy replaciig £ achaved o 4x ViCrease ¥ parformance Explore all BBC bl

Witin the BEC Digtal NMedia Distnbution toam, we used Varnish cache for the fest version of our

Radix caching servers. A Radux server caches HTTP responses fom ongin servers - usually video

and sudho content for IPlayer. delvered using one of the MTTP Adaptive bitrate streaming B'Og Updates
forerats such a8 MPEG-DASH, HLS or HDS. For mone nfomation on Radix and owr overal

caching stralegy. see Digital Dintribution: How on demand content reaches audiences Stay iod with he L posts the

New iPlayer setup, Dec 2015:

* nginx on Linux, 24 cores on two Intel Xeon E5-2680v3
processors, 512 GB DDR4 RAM, 8.6TB RAID array of SSDs.

* 20Gb/s per server. <Not so impressive!

NETFLIX

 FreeBSD, but tweaked.

— Asynchronous sendfile()

* Non-blocking zero copy from disk buffer cache to Net.

— VM scaling
* Fake NUMA domains to avoid lock contention
* Proactive clearup of disk buffer cache.

Lets Do Some Experiments

e 8 core server, 2x 40Gb/s NICs, 4x NVMe SSDs

* Synthetic workload, middlebox adds delay to
reverse path to make RTT realistic.

* Theoretical limits: about 73Gb/s

Compare:
— Stock FreeBSD/nginx

— Netflix version of FreeBSD/nginx
e production codebase in autumn 2016

Network Throughput (Gb/s)

Unencrypted video streaming workload

80 &

60

40

Y W —

e f--@--f--Bx-E
/

Data comes from
disk buffer cache

P 4
Data not in disk
buffer cache Netflix 100%BC

~{}— Netflix 0%BC

- o - Stock 100% BC
—ajo— Stock 0%BC

0 Conclusion

async sendfile() good S

16000

Encryption Problem

sendfile():

— Zero copy from disk buffer cache
TLS:

— Different encrypted stream per user.
Sendfile() and TLS are incompatible!

* Conventional TLS stack gave Netflix 8.5Gb/s

* Netflix implemented kernel stream encryption for
encrypted sendfile.

— But can’t be zero copy anymore.

Network Throughput (Gb/s)

Encrypted video streaming workload

80 &

60

40

20

Performance loss when
content fetched from disk

- [J- Netflix 100%BC ~ % - Stock 100% BC
—{}— Netflix 0%BC —ade— Stock 0%BC

2000 4000 6000 8000 10000 12000 14000 16000
Concurrent HTTP persistent connections

What’s happening?

SSD
@V‘
cPU LIC ° DRAM
-Buffer Cache
_________________ -1
Copy =7 - -Copied data
____________ 7
AES . - [ted dat
TCP == 5 Nl
T~

The stack is too asynchronous.
Data keeps getting flushed from the LLC, and re-loaded.
System is bottlenecked on memory.

Production Netflix workload

192GB of RAM as disk buffer cache.
Only gets a 10% hit ratio.

Modern NVMe SSDs have low latency.
Modern Intel CPUs DMA directly to the L3 cache.

Can we eliminate the disk buffer cache
completely, and fetch everything from SSD on
demand?

ldeal Stack

To achieve this, we must:

 Fetch on demand from the SSD when TCP needs data.

 Assoon as the SSD returns data, process it to
completion and DMA it to the NIC.

Solution Outline

1. ATCP ACK arrives, freeing up congestion
window.

2. Trigger storage stack to request more data from
SSDs to fill that congestlon wmdow

Atlas a complete user-space stack
e Netmap to handle the network
* User-space TCP.
* Implemented diskmap, storage equivalent of netmap
» Maps NVMe buffer rings to userspace and
manages submission and completion queues.

Atlas vs Netflix, unencrypted content

15% better
throughput than
Netflix when cache
hit ratio is low.

Netflix needs 8
cores, Atlas only
needs 4

20

Throughput (Gb/s)

80 &

- O- Netflix 0% BC
- [0~ Netflix 100% BC

e Atlas

Almost no LLC
misses. Data in LLC
when we want it.

iy e BT g

o --0
7
7/
7/
7
-0O---0--=0-=--0
Pl e
’ el
-
O, ’ - O- Netflix 0%BC
7’
O’ - [O- Netflix 100%BC
—e— Atlas

L F T S e R
2000 4000 6000 8000 10000 12000 14000 16000

Concurrent HTTP persistent connections

Still some memory traffic though

If we're lucky: If we’re unlucky:

NVMe NVMe

v
cPU e S DRAM CPU LLC DRAM

(... re-use buffer

\ § =TS » TCP Packets
Y ;Estale buffers

D) Q)

N <4

B repssiuliies

Netmap doesn’t provide a good low-delay fine-grained
way to handle DMA completions.

Can’t reuse buffers fast enough, and this adds some cache
pressure.

Atlas vs Netflix, Encrypted Content

80 &

When cache hit
ratio is low, 50%
more throughput
using half the
cores.

Throughput (Gb/s)

Almost half the
memory reads for
each packet sent.

Memory read/throughput

W

|
\

= O~= Netflix 0% BC

- [OJ- Netflix 100% BC

—fo— Atlas
- S N GHR. GRS RO
o -1

- —e—————k

<
+

¥

-

2000 4000 6000 8000 10000 12000 14000 16000
Concurrent HTTP persistent connections

Atlas TLS memory usage

With no premature When some other DMA
cache eviction: causes cache eviction
NVMe VMe
W o
CPU e ° DRAM CPU LLC DRAM
re NERIBUTTer - re-use buffer
TCP T > » TCP Packets TCp - > » TCP Packets:
<)
Mg &
NIC NIC

DDIN ~AAanw Aanh: DANAA £ 100/ ~f LAV

To operate entirely from the LLC, we’d need to recycle
netmap buffers faster, using a LIFO stack for free buffers.
We’d need more control over DDIO policy (newer CPU!)

Summary

* Netflix addressed all the low-hanging fruit
— Very fast, but now bottlenecked on memory

e Atlasis a specialized stack
— Puts SSD in TCP control loop

— Immediately processes disk reads to completion and
transmits.

— 50% throughput improvement with encrypted content,
close to 50% reduction in memory reads

* Netflix inspired by Atlas

— Now experimenting with how to directly trigger encryption
off of disk DMA completions in their FreeBSD stack.

