
Disk|Crypt|Net
High performance video streaming

Ilias Marinos, Robert Watson (Cambridge),
Mark Handley (UCL),

Randall Stewart (Netflix)

Modern Video Streaming

• Just lots of HTTP requests for video chunks.
• Client picks chunks, so as to adapt rate.
• Server is pretty dumb – just has to go fast.
• HTTP/1.1 persistent connections.
• TLS has become important (YouTube is 95% TLS).

• More than 50% of Internet traffic.
• Important to make good use of expensive

hardware. How fast can you go?

New iPlayer setup, Dec 2015:
• nginx on Linux, 24 cores on two Intel Xeon E5-2680v3

processors, 512 GB DDR4 RAM, 8.6TB RAID array of SSDs.
• 20Gb/s per server. ßNot so impressive!

Netflix

• FreeBSD, but tweaked.
– Asynchronous sendfile()
• Non-blocking zero copy from disk buffer cache to Net.

– VM scaling
• Fake NUMA domains to avoid lock contention
• Proactive clearup of disk buffer cache.

Lets Do Some Experiments

• 8 core server, 2x 40Gb/s NICs, 4x NVMe SSDs

• Synthetic workload, middlebox adds delay to

reverse path to make RTT realistic.

• Theoretical limits: about 73Gb/s

Compare:

– Stock FreeBSD/nginx

– Netflix version of FreeBSD/nginx

• production codebase in autumn 2016

Unencrypted video streaming workload

Data comes from
disk buffer cache

Data not in disk
buffer cache

Conclusion
async sendfile() good

Encryption Problem

sendfile():
– Zero copy from disk buffer cache

TLS:
–Different encrypted stream per user.

Sendfile() and TLS are incompatible!

• Conventional TLS stack gave Netflix 8.5Gb/s
• Netflix implemented kernel stream encryption for

encrypted sendfile.
– But can’t be zero copy anymore.

Encrypted video streaming workload

Performance loss when
content fetched from disk

What’s happening?

SSD
DRAMLLC DMA

DMA NIC

Buffer Cache

Copied data

Encrypted data

Copy

TCP

CPU
1

2

3

AES

The stack is too asynchronous.
Data keeps getting flushed from the LLC, and re-loaded.
System is bottlenecked on memory.

Production Netflix workload

• 192GB of RAM as disk buffer cache.

• Only gets a 10% hit ratio.

• Modern NVMe SSDs have low latency.

• Modern Intel CPUs DMA directly to the L3 cache.

• Can we eliminate the disk buffer cache

completely, and fetch everything from SSD on

demand?

Ideal Stack

NVMe

DRAMLLC DMA

DMA

NIC

AES
TCP

CPU

re-use
buffer

To achieve this, we must:
• Fetch on demand from the SSD when TCP needs data.
• As soon as the SSD returns data, process it to

completion and DMA it to the NIC.

1. A TCP ACK arrives, freeing up congestion
window.

2. Trigger storage stack to request more data from
SSDs to fill that congestion window.

3. SSDs return data placing it in the LLC.
4. Read completion event causes application to

encrypt the data in-place, add TCP headers, and
trigger the transmission of the packets.

5. Network completion event frees the buffer,
allowing it to be reused for a later disk read.

Solution Outline

Atlas: a complete user-space stack:
• Netmap to handle the network
• User-space TCP.
• Implemented diskmap, storage equivalent of netmap

Ø Maps NVMe buffer rings to userspace and
manages submission and completion queues.

Atlas vs Netflix, unencrypted content

Th
ro

ug
hp

ut
 (G

b/
s)

LL
C

m
is

se
s/

s
(x

10
7)

 Netflix needs 8
cores, Atlas only
needs 4

15% better
throughput than
Netflix when cache
hit ratio is low.

Almost no LLC
misses. Data in LLC
when we want it.

Still some memory traffic though

NVMe

DRAMLLC DMA

DMA

NIC

TCP

CPU

stale buffers

re-use buffer

If we’re lucky: If we’re unlucky:

NVMe

DRAMLLC DMA

NIC

TCP

CPU

TCP Packets
re-use buffer

DMA

Netmap doesn’t provide a good low-delay fine-grained
way to handle DMA completions.
Can’t reuse buffers fast enough, and this adds some cache
pressure.

Atlas vs Netflix, Encrypted Content

Th
ro

ug
hp

ut
 (G

b/
s)

M
em

or
y

re
ad

/t
hr

ou
gh

pu
t

Almost half the
memory reads for
each packet sent.

When cache hit
ratio is low, 50%
more throughput
using half the
cores.

Atlas TLS memory usage

With no premature
cache eviction:

When some other DMA
causes cache eviction

DRAMLLC DMA

NIC

AES
TCP

CPU

TCP Packets

re-use buffer

DMA

NVMe

DRAMLLC DMA

DMA

NIC

AES

TCP

CPU

TCP Packets

re-use buffer

NVMe

DDIO can only DMA to 10% of the LLC.
Under load, sometimes this forces other DMA buffers to
be prematurely evicted from the LLC.

To operate entirely from the LLC, we’d need to recycle
netmap buffers faster, using a LIFO stack for free buffers.
We’d need more control over DDIO policy (newer CPU!)

Summary

• Netflix addressed all the low-hanging fruit
– Very fast, but now bottlenecked on memory

• Atlas is a specialized stack
– Puts SSD in TCP control loop
– Immediately processes disk reads to completion and

transmits.
– 50% throughput improvement with encrypted content,

close to 50% reduction in memory reads

• Netflix inspired by Atlas
– Now experimenting with how to directly trigger encryption

off of disk DMA completions in their FreeBSD stack.

