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Early warning based on human activity detection

« Abnormal activities might imply a certain accident happening

« Human activity detection affords early warning

> Human activity > Early warning
detection system Rescue management




Techniques for human activity detection

« Camera-based techniques

« Wearable sensor-based techniques o) Kﬂbl'{ _fw
RS

- Radar-based techniques: (used in this research)

Performing human activity detection with a radar (Doppler radar,
LIDAR), then analyzing the signals that captured by the radar




Micro-Doppler radar

Micro-Doppler radar is to used electromagnetic signal to detect the Doppler effect
caused by the targets

Doppler effect: The target moves with a constant velocity, the carrier frequency of the
returned signal will be shifted

Long Wavelength Small Wavelength
Low Frequency High Frequency

The Doppler Effect for a Moving Sound Source

Advantages of micro-Doppler signatures-based techniques:
« Unaffected by the light

« Unaffected by the weather

«  Without attaching to a human body.



Devices used

low power consumption with long battery life.

BumbleBee Radar: a low-power Pulsed Doppler
Radar (PDR).

e A detection range up to of 10 m
e 60-degree conical coverage pattern.
TelosB mote: an open source platform, designed

by UC Berkley

e |[EEE 802.15.4/ZigBee compliant RF transceiver
e Runs TinyOS 1.1.10 or higher
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Experimental scenario for behaviours detection
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 Two subject targets’ participation
* Two kinds of behaviours:

* walking

* running

* Three different angles (0°, 45°, 90°) between the movement direction and radar beam
6



Signal processing
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Feature extraction and dimension reduction

Too many feature in each spectrogram .

Feature extraction:
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The composition of samples

The composition of the samples.
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80% for training and validation, and 20% for test.

10-fold cross-validation has been applied
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Classification result
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The structure of CNN

C1 M1 C2 M2 C3 F1 F2 Output with
12@48*48*1 12@24%24*1 24@22*22*1 24@11*11*1 24@9*9*1 256 hidden units 76 hidden units Softmax
LA R . uliy !

convolutional . * L
kernel Max ooolin convolutional 272 _ convolutional
P 8 kernel Max pooling kernel
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This work achieved indoor human activity (running, walking) detection using micro-
Doppler radar.

Challenges:

(1) How to make sure these activities are made by human, not animals ?

(2) Whether high classification rate could still be achieved in the outside ?

(3) More behaviours are expected be considered in foreseen experiments.
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