

The Abdus Salam International Centre for Theoretical Physics

Andrés Arcia-Moret

Marco Zennaro Ermanno Pietrosemoli

TV White Spaces

- **TV White Space** is a frequency allocated to broadcasting service but not used within certain region.
 - Never been used
 - Becomes free
- WS are also <u>spaces wisely used</u>: guard bands between channels, predictable white spaces in primary users.

How are White Spaces determined?

- Through **scanning process** and detection of no activity.
 - Largest known incumbents TV Stations (DB registered)
 - IEEE 802.22 suggests to detect incumbent for short time periods then change the channel.
- Caveat:
 - Scanning process gets complex considering: differences in transmission power, topography, antennas.

The awakening of TVWS

Spectrum crunch

٠

- Disconnected communities
 - > 60% of world population with no Internet connection
 - Access to fibre is very costly for rural
 - In emerging economies, there should be technologies to ease the connection for the digitally divided
 - Encourage innovative uses/ management of spectrum to advance in affordable access [A4AI]

From: www.technologyreview.com

Social Motivation

- Common agreement <u>affordable</u> wireless broadband Internet as ICTD principle
 - Closing the digital divide for rural and remote areas
- Allow people and governments to cooperate towards alternative network deployments.
 - Success stories include Community Networks in the ISM band and emerging deployments of TVWS in Africa.
- Incentivise the local production of content and services.

Provide a common ground for people and regulator to govern the free spectrum

Why using TVWS for alternative network deployments?

- More coverage area with the same (WiFi) power
- Need no line of sight
- Central system that controls the hidden terminal (and incumbent) problem and resource sharing
- Adaptation to specific conditions of the clients (distance, obstacles, erratic incumbents, channel bonding)
- Less susceptible to antennas misalignment (due to weather, geography)

Why automatic management of TVWS (in global south)?

- We want to encourage the accounting of the White Spaces in Developing Regions to persuade governments to exempt the license for Alternative Networks.
- Governments use static (manual) databases to account for primary users.
- Accounting for potential interferers: rogue users, unaccounted legal users, UHF mic, city services using trunking
- Other advantages:
 - Administration of indoor WS
 - Long distance, point to point links allowing: emergency communication, disaster relief.
 - Counter intuitive usage of cellular band in urban areas to off-load data from ADSL networks.

Which Stakeholders?

- In Alternative Network deployments, **communities** need to monitor spectrum to negotiate the use white spaces.
 - Communities should be allowed to know about the available spectrum to ease deployments
- The regulator interest on governing the spectrum and providing enough (computational) resources to process the crowd-sourced data.
 - Regionalisation of DBs should make the system scalable.
- Incentivise new business models to attract competition for backhaul connection

O&R Repositories from a practical experience

Our Initial Scenario

- Governments control spectrum management
- Communities have little or no information about free spectrum
 - We propose using low-cost equipment for collecting spectrum occupancy
 - We help in providing first rough view of the spectrum (e.g., Malawi)

http://www.zebra-rfo.org collecting spectrum fingerprints

- ZFRO is basic building block for regionalised repositories
 - Independent spectrum collections from communities.
 - Localised databases for the efficient use of the spectrum.
- Stores spectrum dynamics coming from different stakeholders, with social networking capabilities, it allows:
 - Separation of the areas of interest: urban, sub urban, rural.
 - Proposes a uniform simple data format (and compact)
 - Deals with mid-size scale data storage
 - Offers different perspectives on the same set of data

Strawman Architecture for spectrum governance

Intra tier example

Existent initiatives

- Centralised system initiatives:
 - Google Spectrum Database
 - Microsoft Spectrum Observatory
 - Using centralised repositories (e.g., communicating with OFCOM DBs) [Holland]
- Proposals for spectrum regulation into layers (dynamic channel/frequency selection), helps in dealing with scalability
 - FCC encourages the design of 3-tiered architectures in the context of 5G. [Chan]
- IETF efforts providing protocols to access White Spaces RFC 7545 and RFC 6953.

Monitor Management

Home / Monitors / MatewiNet

MalawiNet	
Malewi TVWS	Network Monitor
running on	() Linux
unique igentifier	1
ip address	Not set
location	Zomba Southern Region MW
Smezone	Africa/Malabo

Summary of tentacles

A to B	192.168.1.1	
A to C	192.168.1.103	
AtoD	192.168.1.104	
ICTP-85	192.168.1.105	
X to Y	192.168.1.106	
	Fol Montor	1
	Download Monitor	

Experimenting with monitoring tools

- There is not appropriate monitoring tools, due to high costs and size.
 - Mobile low-cost monitoring arises as a solution
 - But, many challenges arise as well.
 - Appropriate representation, storage and assessment of a White Space

Collection Workflow

• Detector approach using geo-location database for raw energy detection in the UHF band.

The WhispPi device

Trying to substitute an Agilent 8648C 20.000 US\$ device!

RF explorer spectrum analyser + Raspberry Pi + USB GPS + convenient 4200 mAh battery

Low-cost devices for spectrum collection

- ASCII 32: High speed device, stand alone, less accurate.
- Android Interface to RF Explorer. High speed device.

From the data collection...

- Different speeds for mobile sampling
- Different sampling rates
- Heterogeneous devices (radio, antenna, storage capacity)
- Different formats for storing the data
- No means for assessing the White Spaces!

Regionalised Repositories

(ZEBR)	ARFO	andres.arcia@priel.com 1 -		
W RED TROP	NCY CEDEMIR			
Places	Paces / Menta, Venezuela / Charts Occupation Heatmap White Spaces			
Q Coordinates				
/ Edit place				
de Occupition	Threshold			
Help	Club, and thing in the plot area to poorn in	=		
2.032.00		THUR DO		
	2 77			
		No.		
		Δ		
	*			

Preliminary Results

- 7 countries across the scale of A4AI report
- between 39% and 86% of WS in urban areas.
- couple of developed regions showing between 74% and 86% of WS.

Takeaways

- Initial results report high number of White Spaces thus encouraging the implementation of ORSR for communities in emerging regions (or wherever exists digital divide).
- Based on empirical evidence we propose a two-tier architecture for spectrum occupancy (communities must be the collectors, governments the curators).
- From collection workflow, rezoning and curation of spectrum are the most expensive tasks.
- Assessing white spaces should be a cooperative task (involving communities) from which governments and private companies could benefit.

Thank you. Questions?