

PHY Covert Channels: Can you see the Idles?

Prof. Hakim Weatherspoon Joint with Ki Suh Lee, Han Wang Cornell University

Royal Holloway, University of London June 27, 2016

첩자 (chupja)

Can an underground spy ring exist and thrive within the Internet?

Covert Channels

- Hiding information
 - Through communication not intended for data transfer

Network Covert Channels

- Hiding information
 - Through communication not intended for data transfer
 - Using legitimate packets (Overt channel)
 - Storage Channels: Packet headers
 - Timing Channels: Arrival times of packets

Network Covert Channels

- Hiding information
 - Through communication not intended for data transfer
 - Using legitimate packets (Overt channel)
 - Storage Channels: Packet headers
 - Timing Channels: Arrival times of packets

Goals of Covert Channels

- Bandwidth
 - How much information can be delivered in a second
- Robustness
 - How much information can be delivered without loss / error
- Undetectability
 - How well communication is hidden

Goals of Covert Channels

- Bandwidth
 - How much information can be delivered in a second
 - 10~100s bits per second
- Robustness
 - How much information can be delivered without loss / error
 - Cabuk'04, Shah'06
- Undetectability
 - How well communication is hidden
 - Liu'09, Liu'10

Current network covert channels are implemented in L3~4 (TCP/IP) layers and are *extremely* **slow**.

Chupja: PHY Covert Channel

- Bandwidth
 - How much information can be delivered in a second
 - 10~100s bits per second -> 10s~100s Kilo bits per second
- Robustness
 - How much information can be delivered without loss / error
 - Bit Error Rate < 10%</p>
- Undetectability
 - How well communication is hidden
 - Invisible to detection software

Chupja is a network covert channel which is faster *than prior art*.

It is implemented in L1 (PHY), robust and virtually invisible to software.

Outline

- Introduction
- Design
- Evaluation
- Conclusion

Outline

- Introduction
- Design
 - Threat Model
 - 10 Gigabit Ethernet
- Evaluation
- Conclusion

10 Gigabit Ethernet

Idle Characters (/I/)

- Each bit is ~100 picosecond wide
- 7~8 bit special character in the physical layer
- 700~800 picoseconds to transmit
- Only in PHY

Application

Transport

Network

Data Link

Physical

Terminology

- Interpacket delays (D) and gaps (G)
 Packet i
 Packet i
- Homogeneous packet stream

Packet i Packet i+1 Packet i+2

- Same packet size,
- Same IPD (IPG),
- Same destination

Chupja: Design

Homogeneous stream

• Receiver

Chupja: Design

- With shared G
 - Encoding '1': $G_i = G + \varepsilon$
 - Encoding '0': $G_i = G \varepsilon$

Implementation

- SoNIC [NSDI '13]
 - Software-defined Network Interface Card
 - Allows control and access every bit of PHY
 - In realtime, and in software
- 50 lines of C code addition

Application
Transport
Network
Data Link
Physical

Outline

- Introduction
- Design
- Evaluation
 - Bandwidth
 - Robustness
 - Undetectability
- Conclusion

Evaluation

- What is the *bandwidth* of *Chupja*?
- How *robust* is *Chupja*?
 - Why is Chupja robust?
- How *undetectable* is *Chupja*?

What is the *bandwidth* of *Chupja*?

Evaluation: Bandwidth

• Covert bandwidth equals to *packet rate* of overt channel

How *robust* is *Chupja*?

Evaluation Setup

- Small Network
 - Six commercial switches
 - Average RTT: 0.154 ms

- National Lambda Rail
 - Nine routing hops
 - Average RTT: 67.6ms
 - 1~2 Gbps External Traffic

Evaluation: Robustness

- Overt Channel at 1 Gbps (D = 12211ns, G=13738 /l/s)
- Covert Channel at 81 kbps

Evaluation: Robustness

- Overt Channel at 1 Gbps (D = 12211ns, G=13738 /l/s)
- Covert Channel at 81 kbps
- Modulating IPGS at 1.6us scale (=2048 /I/s)

Evaluation: Why?

- Most of IPDs are within some range from original IPD
 - Even when there is *external traffic*.

Evaluation: Summary

- What is the *bandwidth* of *Chupja*?
 - 10s~100s Kilo bits per second
- How robust is Chupja?
 - BER < 10% over NLR</p>
 - Why is Chupja robust?
 - Sufficiently large E holds throughout the network
- How *undetectable* is *Chupja*?
 - Invisible to software

Broader Context

Why access the physical layer from software?

- Issue:
 - Programmers treat layers 1 and 2 as black box

Opportunities

- **Network Measurements**
- Network Monitoring/Profiling
- **Network Steganography**

 Can improve security, availability, and performance of the distributed systems cloud networks

Accurate available bandwidth estimation [IMC 2014]

Control at 100ps

Measure at 100ps

We advance the State-of-art in available bandwidth estimation because we can control and capture interpacket spacing with exact precision.

Datacenter Time Protocol [SIGCOMM 2016]

Unprecedented, Precise, and bounded synch

- 4 clock ticks / 25 ns bounded peer-wise synchronization
- 100ns precision synchronization for an entire datacenter
- No clock differs by more than 100ns
- Free No network traffic: Use the PHY!

Rack-scale computing: Coordination Free Networks

- Assuming synchronized time, schedule every packet
- Every node is allocated a full time slot to a single destination
- No two nodes will be able to communicate with the same destination at the same time

Node 1	2	3	4	5
Node 2	3	4	5	1
Node 3	4	5	1	2
Node 4	5	1	2	3
Node 5	1	2	3	4

1 2 3 4

Rack-scale computing: Coordination Free Networks

Benefits

- No network contention
- Full bisection bandwidth
 - Direct connect topology
 - Route through one random intermediate node
- Bounded latency
- Low power

	-		U	•
Node 1	2	3	4	5
Node 2	3	4	5	1
Node 3	4	5	1	2
Node 4	5	1	2	3
Node 5	1	2	3	4

P4FPGA [http://p4fpga.org]

- P4: Programming Protocol-Independent Packet Processors
- Use P4 to describe many different network applications

Experience – Towards a P4 FPGA-based SDN network Consensus as a Service (CAANS)

- Consensus protocols are the foundation for fault-tolerant systems
 - Ensures that a computation/group agrees on a value
 - E.g., OpenReplica, Ceph, Chubby
- Many distributed problems can be reduced to consensus
 - E.g., Atomic broadcast, atomic commit
- Any improvement in performance would have big impact
- Key Idea: Move Consensus into the Network

Conclusion

- Chupja: PHY covert channel
 - High-bandwidth, robust, and undetectable
- SoNIC Projects [NSDI '13]
 - P4FPGA / P4Paxos [arXiv'16; http://p4fpga.org]
 - Datacenter Time Protocol [SIGCOMM'16]
 - Chupja: Covert Channels [NSDI'14]
 - Understanding Burstiness [CISS'14]
 - MinProbe: Available bandwidth estimation [IMC'14]

Contact: <u>hweather@cs.cornell.edu</u> <u>http://www.cs.cornell.edu/~hweather</u> Project website: <u>http://sonic.cs.cornell.edu</u> Group website <u>http://fireless.cs.cornell.edu</u>

Thank you