

Globally Synchronized Time via Datacenter Networks

Vishal Shrivastav, Cornell University

Joint with Ki Suh Lee, Han Wang, and Hakim Weatherspoon

COSENERS 2016

How can we scalable synchronize clocks with high precision?

Scalable – Entire datacenter High precision – *bounded precision*; e.g. no clock differs by more than hundreds of nanoseconds

Capability essential for network and distributed applications

Networks – One-way delay, consistent updates, etc Distributed systems – consensus, snapshots, etc

- Precision: difference between any two clocks
- Typical clock offset synchronization
 - Offset

- Precision: difference between any two clocks
- Typical clock offset synchronization
 - Offset = $((t_1 t_0) (t_3 t_2))/2$ [d+offset] [d-offset]

- Precision: difference between any two clocks
- Problems affecting precision
 - Oscillator skew (i.e. frequency of clocks differ)
 - Reading remote clocks: timestamps, network stack, network jitter
 - Resynchronization frequency

- Precision: difference between any two clocks
- Synchronization Protocols

	Precision	Scalability	Overhead	Extra Hardware
NTP	us	Good	Moderate	None
PTP	sub-us	Good	Moderate	PTP-enabled devices
GPS	ns	Bad	None	Timing signal receivers, cables
		t ₃		t ₂ Time
		t ₀	2	t ₁ master

Outline

- Introduction
- Design
- Evaluation
- Conclusion

Cornell University

Use the PHY to synchronize clocks

DTP

- 10 Gigabit Ethernet

 Idle Characters (/I/) and Control blocks (/E/)
 Packet i
 Packet i+1
 Packet i+2

 Application

 Transport
 Network
 Data Link
 - Standard requires at least 12 idle characters /I/ between pkts
 - i.e. At least one 64-bit Control Block /E/ between pkts
 - Idle characters / control blocks sent even if no packets to send
 - DTP overwrites idle characters (control block) to send protocol messages
 - DTP does not effect standard at all

DTP

- 10 Gigabit Ethernet
 - Idle Characters (/I/) and Control blocks (/E/)

Application

Transport

Datacenter Time Protocol (DTP) Precise and bounded synchronization

- 4 oscillator ticks (25ns) bounded peer-wise synchronization
- 150ns precision synchronization for an entire datacenter
- No clock differs by more than 150ns
- Free No network traffic: Use the PHY!

Outline

- Introduction
- Design
- Evaluation
- Conclusion

Evaluation

- Compare measured precision of DTP and PTP
 - Measurement and observation period was two days
- PTP: Compare precision between Timeserver and Servers
 - Mellanox NIC (hardware), IBM G8264 Switch, Timekeeper server
- DTP: Compare precision between leaf servers and switches
 - Terasic DE5 FPGA-based developmentNet board

PTP – Idle Network (No Network Traffic)

Clocks differ by a few hundred nanoseconds

PTP – Medium Loaded Network (4Gbps Traffic)

Clocks differ by tens of *micro*seconds

PTP – Heavily Loaded Network (9Gbps Traffic)

Clocks differ by hundreds of microseconds

DTP – Heavily Loaded Network (9Gbps Traffic)

Time (mins) Clocks *never* differed by more than 4 clock ticks, 25ns *Bounded Precision*

Outline

- Introduction
- Design
- Evaluation
- Conclusion

Conclusion

DTP provides

- Bounded precision: 4 oscillator ticks (25ns)
- Scalability: 150ns for entire datacenter
- Free No network traffic: Use the PHY!
- Needs hardware modifications (just like PTP)

Thank you