
PSPAT

PSPAT: Packet Scheduling with PArallel Transmit

Luigi Rizzo, Paolo Valente*, Giuseppe Lettieri, Vincenzo Maffione
Università di Pisa, *Univ. di Modena e Reggio Emilia

http://info.iet.unipi.it/ luigi/research.html

Work supported by H2020 project SSICLOPS

Paper at http://info.iet.unipi.it/ luigi/papers/20160511-mysched-preprint.pdf

Problem statement

Network links way too fast
NICs and operating systems are catching up
VMs are catching up, too
Software Packet scheduling not there yet

Why do we care about software schedulers ?
first block in the network path for VMs

PSPAT: Packet Scheduling with PArallel Transmit

Luigi Rizzo, Univ. di Pisa

http://info.iet.unipi.it/%C2%A0luigi/research.html
http://info.iet.unipi.it/%C2%A0luigi/papers/20160511-mysched-preprint.pdf

Scheduling

Contract between client and resource manager:
"If you behave, I'll give you some guarantee"

conditions must be under control of individual clients
``if other clients behave'' would be a bad conditions

guarantees are a binding promise for the scheduler
we want a solution with known theoretical service guarantees

Scope and limitations

Theory gives us several algorithms with tradeoff between performance and guarantees
DRR (deficit round robin): 20 ns/decision, O(N) delay
WF2Q+ (Weighted Fair Queueing): O(log N) time, O(1) delay
QFQ/QFQ+ (Quick Fair Queueing): 40-50 ns/decision, O(1) delay

Operating conditions:
request rates up to 1..10 M/s
response times < 1us

Traditional scheduler placement

SW: Both decision and dispatch are serialized.
unnecessary serialization
prevents scalability

HW: the NIC takes care of scheduling
limited choice of algorithms
the bus is still a point of contention.

Cutting corners

Things we do when we are too slow:
trivial schedulers (FIFO, DRR: fast but poor delay guarantees)
active queue management (RED, CODEL: rely on everyone behaving)
bounded number of queues: rely on quiet neighbours

and we give up on guarantees.

Wrong approach!
the algorithms are good enough
we need to remove the unnecessary tx serialisation

PSPAT key idea

Decouple scheduling and transmisison
decision must be sequential, transmission does not need to
scheduler (arbiter) only indicates WHEN a packet can be transmitted
clients then transmit in parallel, can enjoy an uncongested path to the wire.
can still do a worst case analysis

PSPAT scheduler placement

PSPAT scheduler placement

Operation:
clients submit packets to the queue
arbiter marks those ready for transmission
clients do the transmit

Pros and cons
client and arbiter can operate lock free
no extra queueing
arbiter has to scan through all queues

PSPAT pseudocode: Client Submit

Clients just put packets in the queue

int submit(pkt) {
 i = pkt->queue_id;
 cur = q[i].tail;
 next = (cur + 1) % QUEUE_SIZE;
 if (slots[next] != EMPTY) {
 return ENOSPACE;
 }
 slots[cur] = pkt;
 kick_arbiter(); /* only if arbiter can sleep */
 return SUCCESS;
}

no barrier needed, as in FastForward
synchronization only through current slot

PSPAT pseudocode: Client Transmit

Client drains marked packets and reset queue slots

void drain(i) { /* drain marked packets */
 slots = q[i].slots;
 cur = q[i].client_head; /* next packet to send */
 sched_head = q[i].head; /* set by the arbiter */
 while (cur != sched_head) {
 <transmit packet in slots[cur]>
 slots[cur] = EMPTY; /* release the slot */
 cur = (cur + 1) % QUEUE_SIZE;
 }
 q[i].client_head = cur;
}

again no barrier, sync only on consumer pointer
queue is only written to by the client

PSPAT pseudocode: Arbiter scan

int do_scan() {
 t0 = rdtsc(); /* take a timestamp */
 /*-- first pass, scan queues --*/
 for (i=0; i < N; i++) {
 while ((pkt = <new pkt in q[i]>))
 SA.enqueue(pkt);
 }
 /*-- 2nd pass, mark packets due for tx --*/
 while (link_idle < t0) {
 pkt = SA.dequeue();
 if (pkt == NULL) {
 link_idle = t0;
 return NO_TRAFFIC;
 }
 i = pkt->queue_id;
 q[i].head = (q[i].head + 1) % QUEUE_SIZE; /* mark! */
 link_idle += tx_time(pkt->len, bandwidth);
 }
 return MORE_TRAFFIC;
}

PSPAT additional code features

Several tricks reduce cache bouncing and misses
lock free queue with various slot and pointer caching tricks
queue slots only updated by the client
arbiter can skip non-empty queues on scans
idle queues will likely be cached on the arbiter
rate limit (memory) access to queues

Performance analysis

Measure throughput and latency of different configurations:
UDP, no scheduler
UDP, with TC
UDP, with PSPAT
just PSPAT
fast I/O (netmap) with PSPAT

Special interest in performance at high loads
hopefully no livelock or latency explosion

Measurement setup

Traffic generators
one thread per client, pinned to a core, programmable rate
tests over loopback interface
2 output mechanism: sockets or netmap
3 scheduler architectures: none, TC, PSPAT

Two different platforms
single socket I7, linux 4.5, 4 cores/8 threads
dual socket E5, linux 2.6.32, 12 cores/24 threads

Throughput measurements

Clients send as fast as possible
variable number of clients
schedulers use DRR
TC and PSPAT rates higher than scheduler's capacity
measurements in PPS as that is the relevant metric

Throughput with regular UDP

Throughput with fast I/O

PSPAT -- Page 24/24L < > T H local

file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/

One way latency measurements

Experiments with different link rates and number of clients
one client has weight=100, sends at half the reserved bandwidth
other clients have weight=1, send as fast as possible
only UDP sockets

Theory says latency is proportional to MSS/RATE

Baseline latency distribution: only high weight client

Link always idle here, so only syscall + communication overhead

PSPAT -- Page 24/24L < > T H local

file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/

Latency versus rate, Xeon + linux 2.6.32

Latency versus rate, I7 + linux 4.5

Latency under overload (I7)

Summary

Throughput and latency tests very encouraging
potentially 5-10x higher throughput
very small latency increase at low load
much better latency under high load
can fall back to NAPI-like behaviour at low load

http://info.iet.unipi.it/ luigi/research.html
http://info.iet.unipi.it/ luigi/papers/20160511-mysched-preprint.pdf

http://info.iet.unipi.it/%C2%A0luigi/research.html
http://info.iet.unipi.it/%C2%A0luigi/papers/20160511-mysched-preprint.pdf

