Cross-Layered Multipath Resilient Transport Protocol for the Future Internet

James P.G. Sterbenz*^{†‡} 司徒傑莫 Джеймс Ф.Г. Штербэнз 송재윤 Yufei Cheng 成字飞, Anh Nguyễn,

*Department of Electrical Engineering & Computer Science Information Technology & Telecommunications Research Center The University of Kansas *School of Computing and Communications, Infolab 21 Lancaster University *The Hong Kong Polytechnic University jpgs@{ittc.ku.edu/comp.{lancs.ac.uk/polyu.edu.hk}} https://www.ittc.ku.edu/~jpgs https://wiki.ittc.ku.edu/~jpgs

KU

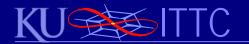
Where is Kansas? **Geography Lesson**

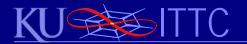
LANCASTER

UNIVERSIT

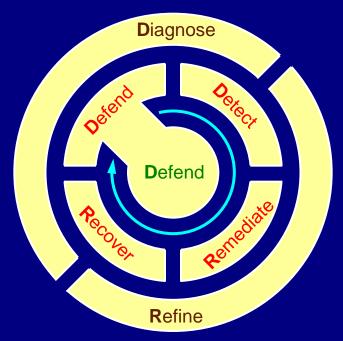
Resilient Transport and Routing Outline

- ResiliNets initiative
 - multilevel interrealm resilience
 - resilience to attackers
 - resilience to large scale disasters
- ResTP: resilient transport protocol
- GeoDivRP: geodiverse routing protocol

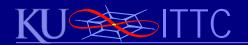

NCASTER


Resilience and Survivability Motivation and Definition

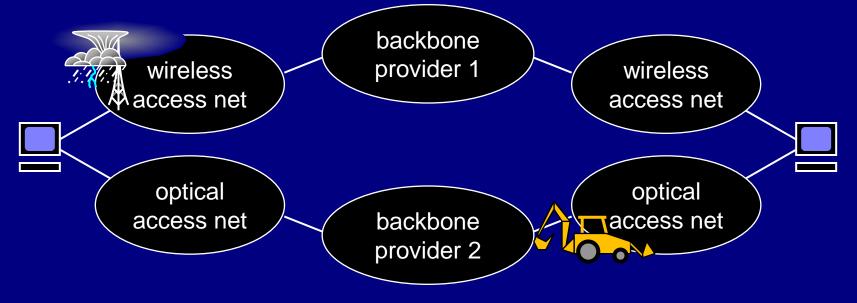
- Increasing reliance on network infrastructure
 ⇒ Increasingly severe consequences of disruption
 ⇒ Increasing attractiveness as target from bad guys
- Need *resilience*
 - provide and maintain acceptable service
 - in the face of faults and challenges to normal operation
- Challenges
 - ..
 - large scale disasters (natural and human-caused)
 - malicious attacks from intelligent adversaries


ResiliNets Initiative Goals

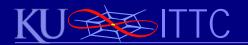
- Understand network structure and vulnerabilities
 - develop new models and tools for analysis
- Develop ways to increase network resilience
 - improving existing networks under cost constraints
 - increase cost to attackers
 - Future Internet design
 - validate by analysis, simulation, and experimentation
- Funded primarily by
 - US NSF FIND and GENI programs and NeTS (with Medhi)
 - US DoD
 - EU FP6 and FP7 FIRE programme (with David Hutchison)



ResiliNets Strategy D²R² + DR

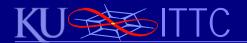

- Two phase strategy for resilience
- Real time control loop: D²R²
 - defend
 - passive
 - active
 - detect
 - remediate
 - recover
- Background loop: DR
 - diagnose
 - refine

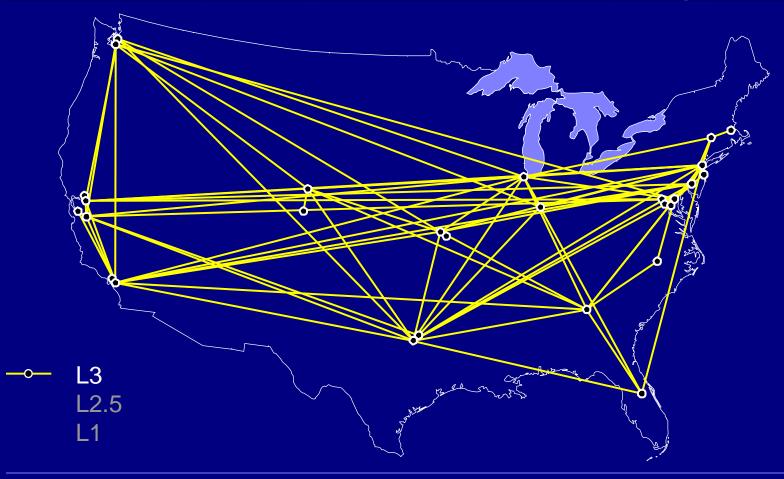
[Wiki 2005, ComNet 2010]



ResiliNets Principles Redundancy, Diversity, Heterogeneity

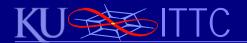
- Diversity
 - mechanism (wired & wireless), provider, geographic path
- Multipath transport
 - spreading (erasure code) or as hot-standby


ANCASTER

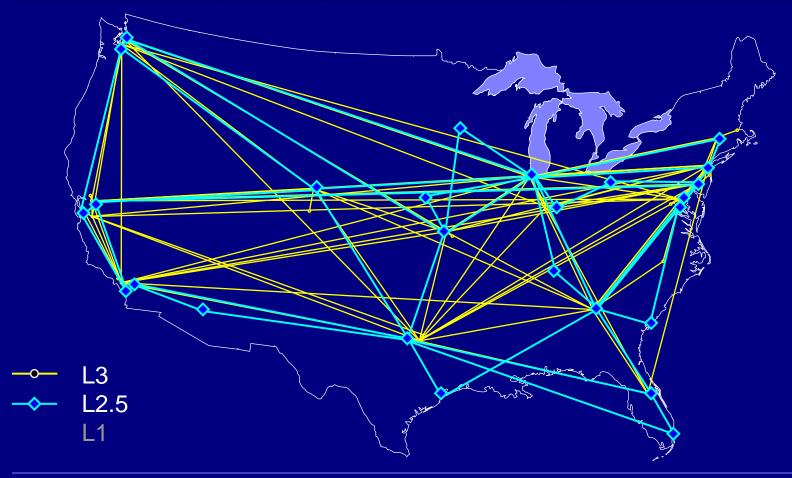


Multilevel Structural Diversity Multilevel Interrealm Resilience

- ResiliNets review
- Multilevel interrealm resilience
 - resilience to attackers
 - resilience to large scale disasters
- ResTP: resilient transport protocol
- GeoDivRP: geodiverse routing protocol

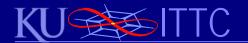


Multilevel Network Topology Example: Sprint L3 IP PoP Topology

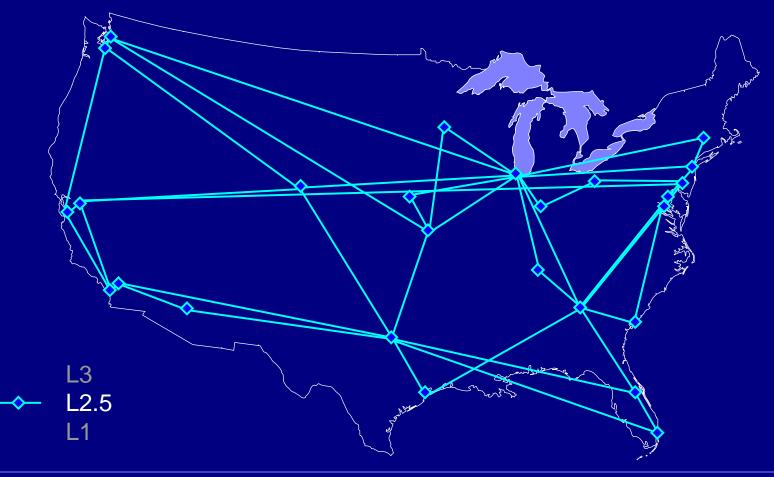


LANCASTER

IVFRSIT

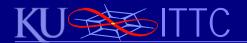


Multilevel Network Topology Example: Sprint L3 overlay on L2.5

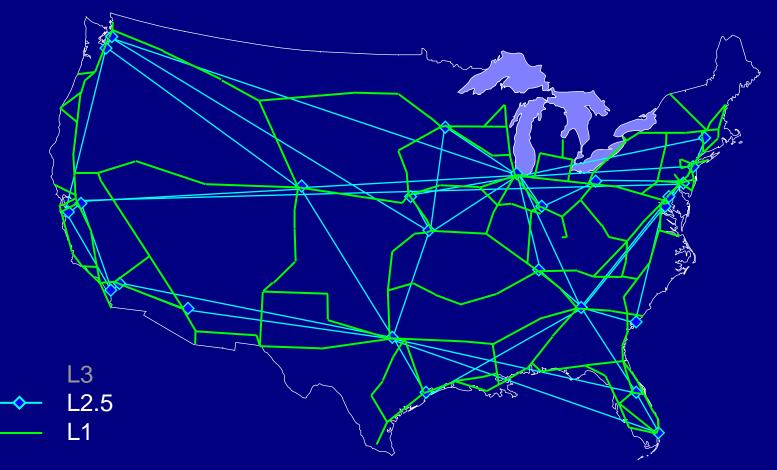


LANCASTER

IVERSIT

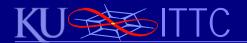


Multilevel Network Topology Example: Sprint L2.5 MPLS PoP Topology

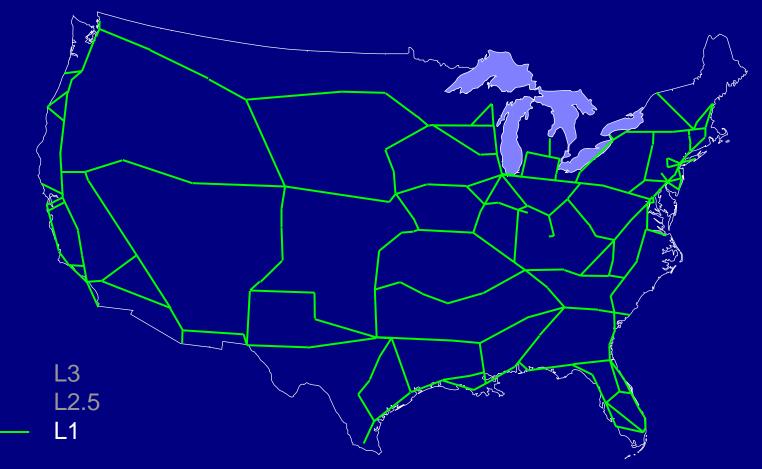


LANCASTER

UNIVERSIT

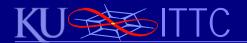


Multilevel Network Topology Example: Sprint L2.5 overlay on L2/1

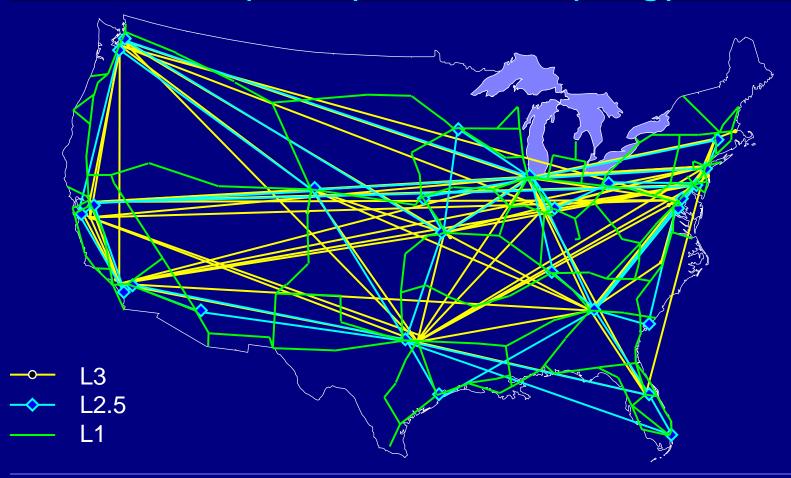


LANCASTER

UNIVFRSIT

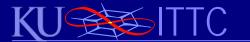


Multilevel Network Topology Example: Sprint L1 Physical Fiber Topology

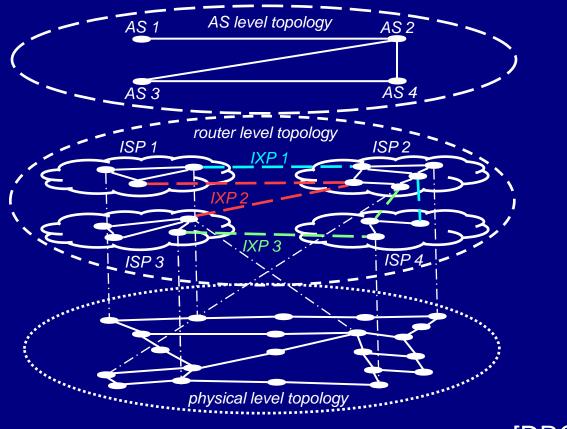


LANCASTER

UNIVERSIT



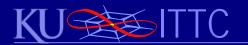
Multilevel Network Topology Example: Sprint L1–3 Topology



LANCASTER

UNIVERSIT

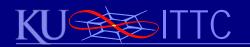
Multilevel Network Analysis Abstraction of Internet Topology

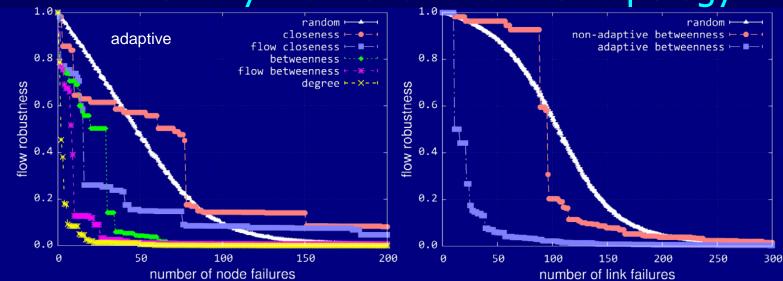

[DRCN 2013]

LANCASTER

IVERSIT

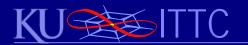
03 July 2015


Cross-Layered Multipath Resilient Transport



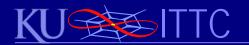
Multilevel Structural Diversity Resilience to Large-Scale Disasters

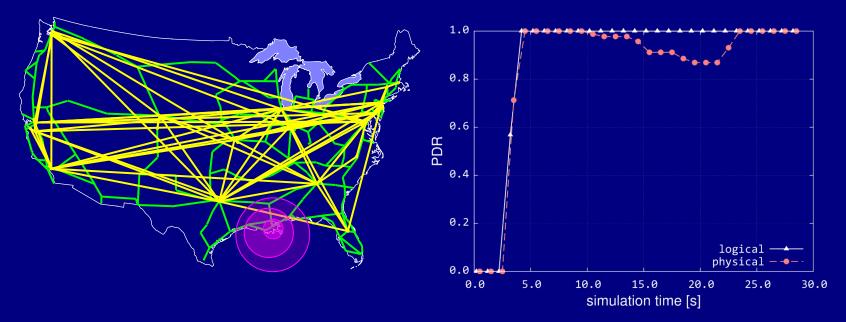
- ResiliNets review
- Challenge Taxonomy
- Multilevel interrealm resilience
 - resilience to attackers
 - resilience to large scale disasters
- ResTP: resilient transport protocol
- GeoDivRP: geodiverse routing protocol


Multilevel Resilience Effect of Physical Failures on L3 Topology

• Attacks against physical infrastructure

- based on centrality (importance) metrics
- adaptive recomputes metrics after each node failure)
- Analysis of impact on higher layer flows
 - heuristics to add elements under cost constraints

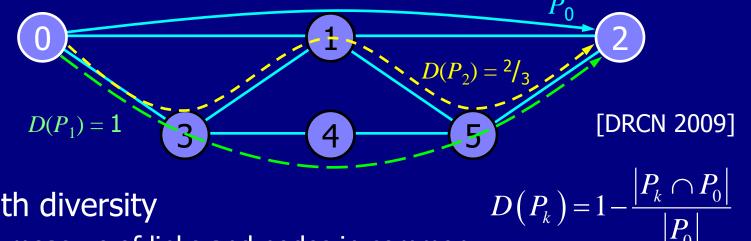

ANCASTER



Multilevel Structural Diversity Resilience to Large-Scale Disasters

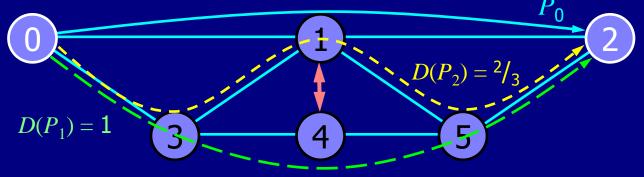
- ResiliNets review
- Challenge Taxonomy
- Multilevel interrealm resilience
 - resilience to attackers
 - resilience to large scale disasters
- ResTP: resilient transport protocol
- GeoDivRP: geodiverse routing protocol

Simulation Analysis Example: Multilevel Analysis of Disaster



- Hurricane disaster in New Orleans area
- Destruction of physical infrastructure
- Effect on IP-layer network services

ANCASTER

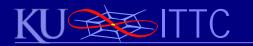

Path diversity

measure of links and nodes in common

- EPD: effective path diversity [0,1)
 - normalised diversity with respect to a single shortest path
 - measure of E2E flow resilience
- TGD: total graph diversity is average of EPD
 - for all pairs: quantifies available diversity in graph

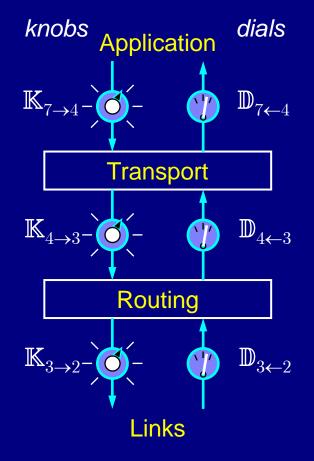
ΝΓΔΥΤ

Resilience Analysis Path and Graph Diversity with Distance Metric

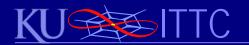


- cTGD: compensated TGD
 - weighted to be predictive of flow robustness [RNDM 2010]
 - algebraic connectivity also fair predictor or flow robustness
- GeoPath diversity
 - distance *d* between paths beyond source and destination
 - GeoDivRP: (k, d, [s,t]) multipath geographic routing
 - number of paths k

03 July 2015

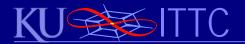

[RNDM 2013]

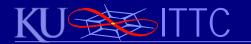
NCASTER



ResiliNets Protocols Cross-Layer Model: Generic

- *Knobs* $\mathbb{K}_{i \to i-1} = \{k_i\}$ influence behaviour to levels below
- *Dials* $\mathbb{D}_{i+1 \leftarrow i} = \{d_i\}$ expose characteristics to upper levels
- Levels (of significance to ResiliNets)
 - 8: social
 - 7: application
 - 4: end-to-end transport
 - 3i: inter-realm (domain)
 - 3r: routing
 - 3t: logical topology
 - 2: hop-by-hop links
 - 1: physical topology


ANCASTER

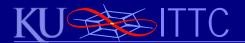

Multilevel Structural Diversity Resilience Multipath Transport

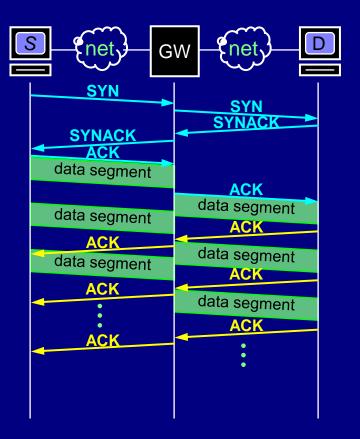
- ResiliNets review
- Challenge Taxonomy
- Multilevel interrealm resilience
 - resilience to attackers
 - resilience to large scale disasters
- ResTP: resilient transport protocol
- GeoDivRP: geodiverse routing protocol

Resilient Transport: ResTP Overview

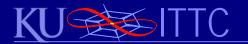
- ResTP: Resilient Transport Protocol [CFI 2015]
 flexible and composable (ala TP++ [Feldmeier, MCauley])
- Flexible and composable
 - flow setup and management
 - including multipath support
 - error control
 - transmission (flow and congestion) control
- Cross-layered
 - applications specify service and threat model
 - behaviour based on path characteristics
 - specifies path requirements to GeoDivRP

Resilient Transport: ResTP Flow Modes

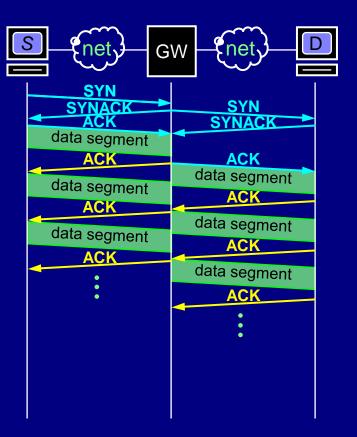

- Multiple flow modes based on Flow flags
 - connection oriented CON=1
 - opportunistic connections CON=1 OPT=1
 - signalling overlaps data
 - custody transfer at realm gateways CON=1 CXF=1
 - for DTNs
 - signalled flow with datagrams CON=0 ARQ=0
 - individual datagrams CON=0


Resilient Transport: ResTP Transfer Modes

- Multiple transfer modes based on Flow & Error flags
 - fully reliable (E2E 3-way handshake & ACKs) CON=1 CXF=0
 - may be opportunistic flow setup
 - may use HARQ
 - opportunistic connections OPT=1
 - signalling overlaps data
 - nearly reliable
 - custody transfer at realm gateways for DTNs CON=1 CXF=1
 - AeroTP subset of ResTP uses this
 - quasi-reliable: E2E FEC giving statistical reliability
 - unreliable signalled flow with datagrams CON=0 ARQ=0
 - unreliable individual datagrams CON=0


Resilient Transport: ResTP Fully-Reliable Transfer

- Fully reliable
 - E2E connection management
 - E2E ACKs

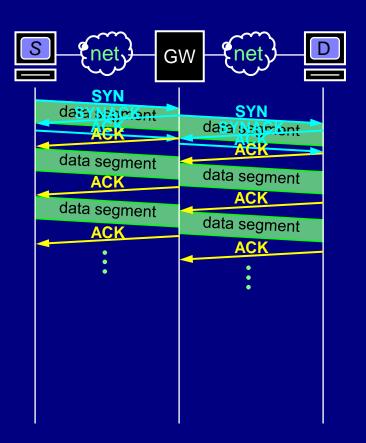

LANCASTER

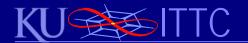
UNIVERSIT

Resilient Transport: ResTP Nearly-Reliable Transfer

- Nearly reliable
 - e2e connection management
 - e2e ACKs
 - custody transfer at gateways

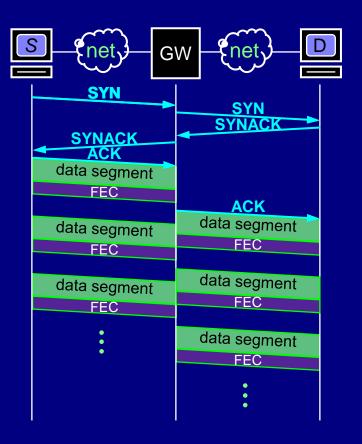
LANCASTER


U N I V E R S I T



Resilient Transport: ResTP Nearly-Reliable Opportunistic Transfer

- Opportunistic signalling
 - data overlaps
- Nearly reliable
 - e2e connection management
 - e2e ACKs
 - custody transfer at gateways

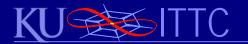


IVERSI

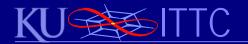
Resilient Transport: ResTP Quasi-Reliable Transfer

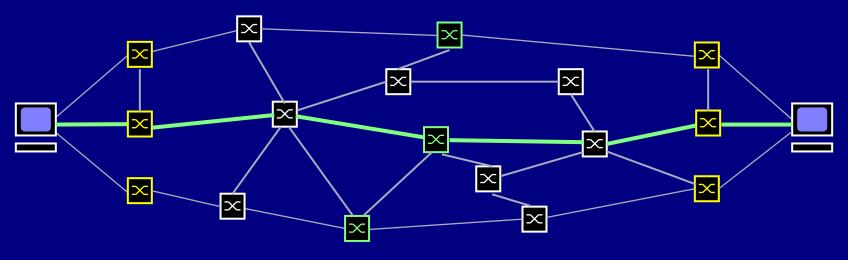
- Quasi reliable
 - E2E (or e2e) L4 FEC
 - no data ACKs

LANCASTER


UNIVERSIT

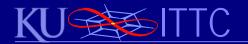
ResTP Operation Error Control


- Per subflow err control modes based on Error flags
 - ARQ for reliable service
 - SACK, MACK, NAK, SNACK (SCPS-style)
 - HARQ for reliable service on lossy path
 - adaptive FEC for quasireliable service
 - none for unreliable service
- Sequence numbers are TPDU numbers
 - not byte sequence numbers as with TCP

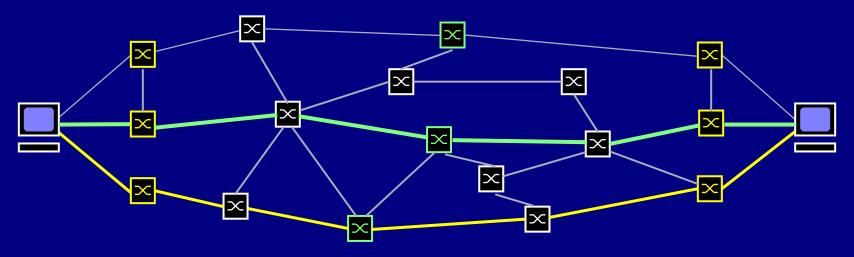

Resilient Transport: ResTP Error Control

- Multipath modes
 - unipath
 - alternate path may be added on-demand
 - alternate path as hot-standby
 - erasure coding across k paths (typically k = 3)
 - best coding for large skew? [UiB?]

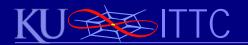
NCASTER

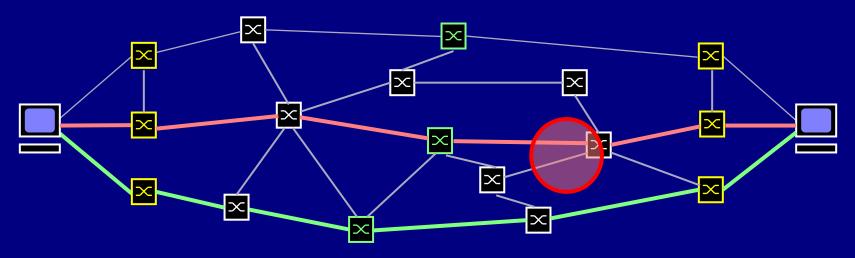


ResTP Multipath Unipath Mode



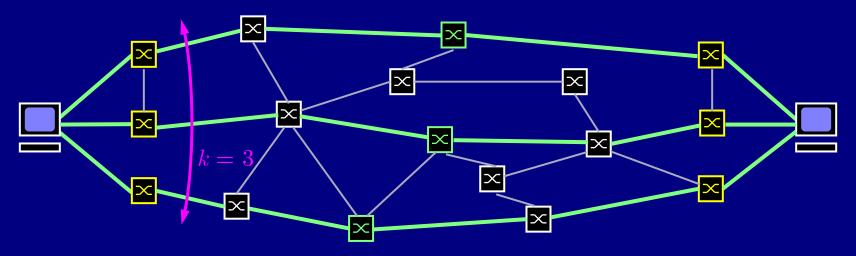
- ResTP unipath
 - -MP? = 0 MPM = 0 k = 1
 - conventional unipath E2E communication
 - requires traditional recovery
 - fast restoration before connection timeout
 - E2E connection retry


LANCASTER

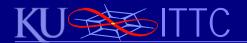

ResTP Multipath Hot-Standby Mode

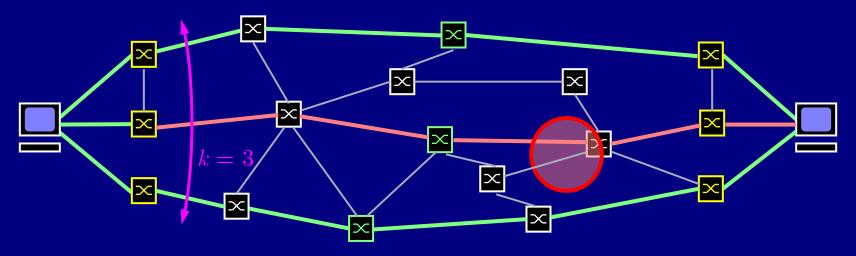
- ResTP hot standby mode
 - -MP? = 1 MPM = 0 k = 2
 - information transferred only on primary subflow
 - no information transfer on secondary flow

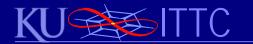
ResTP Multipath Hot-Standby Mode



- ResTP hot standby mode
 - -MP? = 1 MPM = 0 k = 2
 - information transferred only on primary subflow
 - no information transfer on secondary flow
 - unless primary fails
 - faster restoration but some TPDU loss

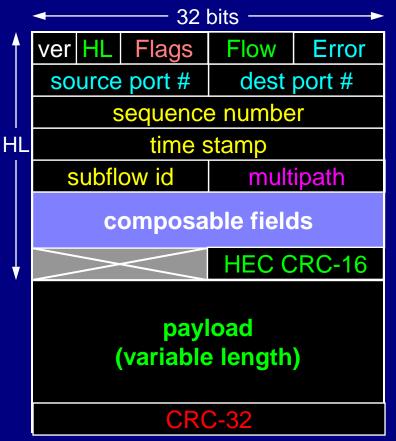

ANCASTER


ResTP Multipath Spreading Mode

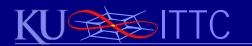

- ResTP multipath spreading mode
 - MP? = 1 MPM = 1 k = k
 - spread information across k subflows (e.g. k = 3)
 - coding specified in E2E coding scheme

ResTP Multipath Spreading Mode

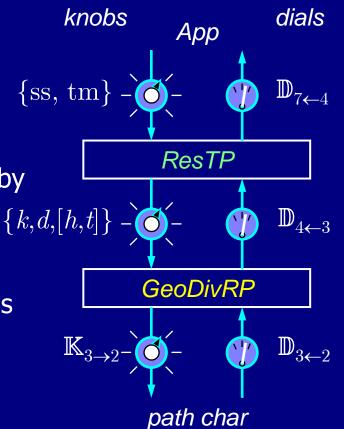

- ResTP multipath spreading mode
 - -MP? = 1 MPM = 1 k = k
 - spread information across k subflows (e.g. k = 3)
 - coding specified in E2E coding scheme
 - E2E flow survives path loss with no E2E loss or disruption

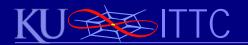

Resilient Transport: ResTP Transmission Control

- Transmission control modes [future work: UiO?]
 - subflow congestion control
 - subflows should generally not share nodes nor links


ResTP TPDU Format

- Header
 - ResTP version
 - header length in words
 - type flags
 - flow type
 - error control
 - src and destination app ports
 - TPDU sequence #
 - timestamp
 - subflow id
 - multipath
 - HEC header check


LANCASTER


U N I V E R S I

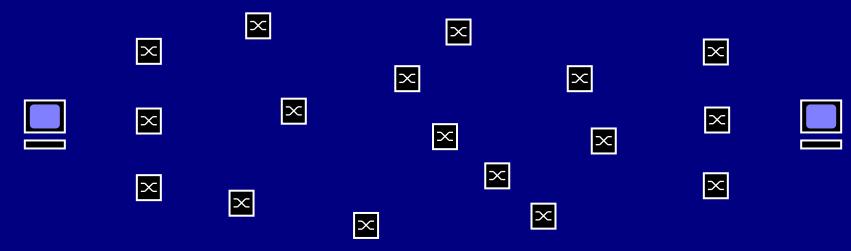
ResiliNets Protocols Cross-Layer Model: ResTP/GeoDivRP

- Application
 - $\mathbb{K}_{7\to4} = \{ss, tm\}$ service spec and threat model
- E2E Transport: ResTP
 - erasure spreading vs. hot standby
 - FEC vs. HARQ vs. ARQ
 - $\mathbb{K}_{4\rightarrow 3} = \{k, d, [h, t]\}$ *k*-path diversity over distance *d* opt. stretch *h* and skew *t* bounds
- Routing: GeoDivRP
 - construct k d-diverse paths



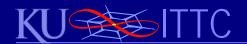
Multilevel Structural Diversity GeoDiverse Multipath Routing

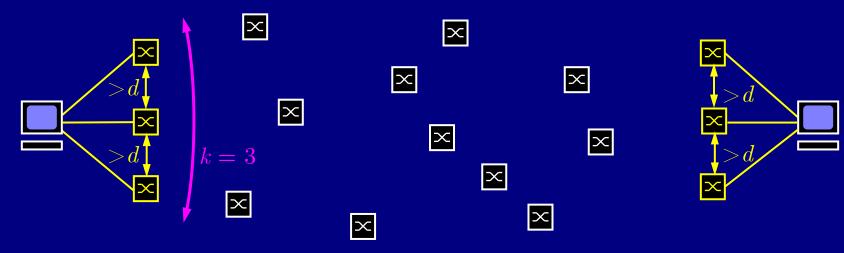
- ResiliNets review
- Challenge Taxonomy
- Multilevel interrealm resilience
 - resilience to attackers
 - resilience to large scale disasters
- ResTP: resilient transport protocol
- GeoDivRP: geodiverse routing protocol



GeoDivRP

- Two heuristics: iWPSP and MLW
- iWPSP (iterative waypoint shortest path)
 - choose neighbours and waypoints to meet diversity spec
 - splice Dijkstra shortest paths
 - complexity: $2c^2n^2 \log n$ (for average of *c* neighbours)
 - [Cheng and Sterbenz @ KU: DRCN 2014]
- MLW (modified link weights)
 - modify link weights higher close to primary path
 - forces (weighted) shortest path alternates to be diverse
 - complexity: $2n \log n$
 - [Gardner, May, and Medhi @ UMKC: DRCN 2014]

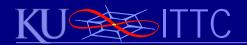


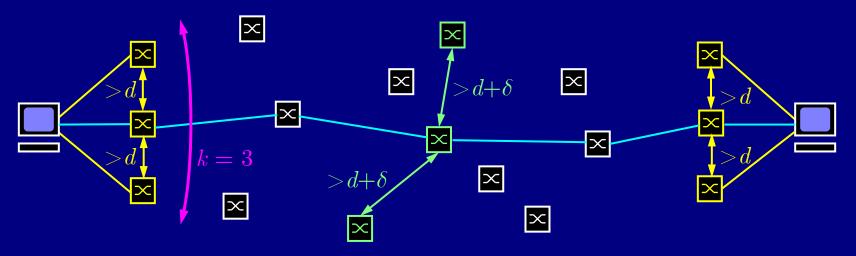


- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers

LANCASTER

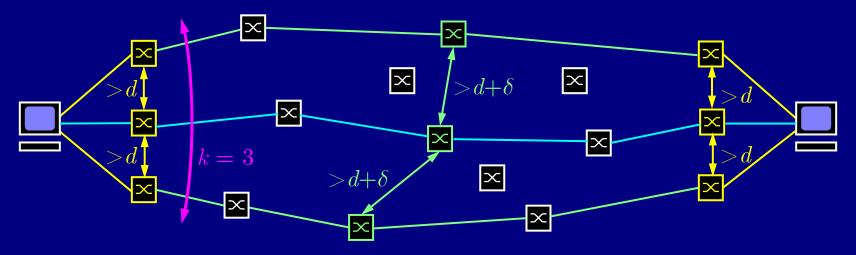
UNIVERSIT



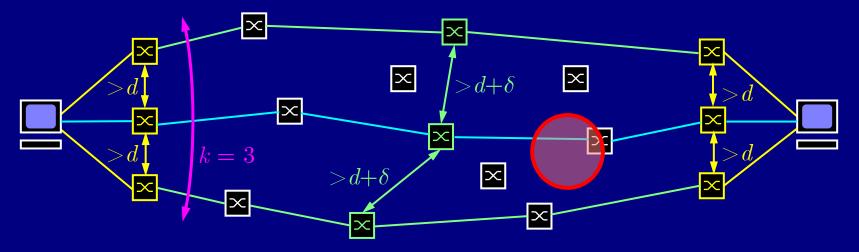


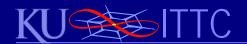
- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers
 - choose k next hop routers at least d apart if possible

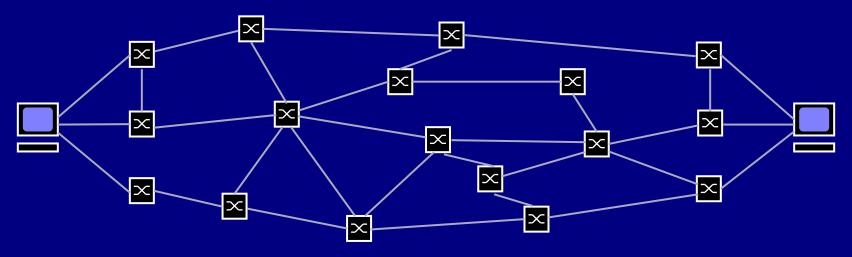
_ANCASTER


IVERSI

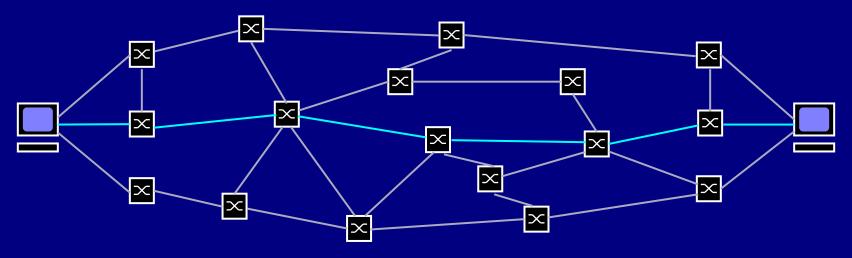
- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers
 - choose k next hop routers at least d apart if possible
 - choose mid-point waypoints $d+\delta$ wrt to shortest path
 - limit stretch to h and skew to t if specified and possible




- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers
 - choose k next hop routers at least d apart if possible
 - choose mid-point waypoints $d+\delta$ wrt to shortest path
 - limit stretch to h and skew to t if specified and possible
 - use conventional SPF (Dijkstra) for paths to waypoints

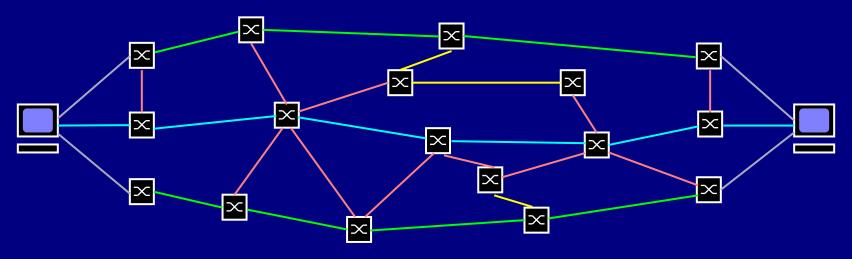


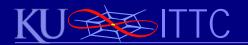
- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers
 - choose k next hop routers at least d apart if possible
 - choose mid-point waypoints $d+\delta$ wrt to shortest path
 - limit stretch to h and skew to t if specified and possible
 - use conventional SPF (Dijkstra) for paths to waypoints

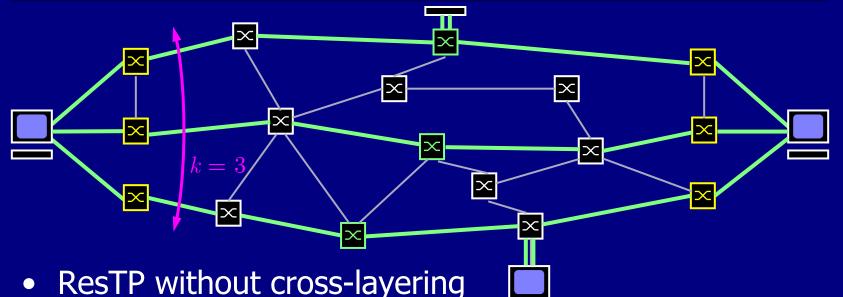


- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers

LANCASTER


UNIVERSI


- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers
 - choose primary shortest path

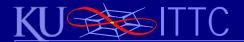


- GeoDivRP: intermediate waypoint algorithm
 - LSAs contain geolocation of routers
 - choose primary shortest path
 - modify link weights higher close to primary path
 - forces (weighted) shortest path alternates to be diverse

ANCASTEF

ResTP Multipath ResTP without GeoDivRP

- no ability to change routing
- no knowledge of network topology
- Assume coöperation from other distributed locations
 - choose geo-diverse relays; multihomed ISPs when possible


References ResTP and GeoDivRP

 Trúc Anh Ngọc Nguyễn, Justin P. Rohrer, and James P.G. Sterbenz,

"ResTP – A Transport Protocol for FI Resilience", *ACM Conference on Future Internet Technologies (CFI)*, June 2015, pp. 9–11.

 Yufei Cheng 成字飞, M. Todd Gardner, Junyan Li, Rebecca May, Deep Medhi, and James P.G. Sterbenz, "Optimised Heuristics for a Geodiverse Routing Protocol", *IEEE/IFIP Design of Reliable Communication Networks* (*DRCN*),

Ghent, Belgium, April 2014, pp. 1–9.

LANCASTER UNIVERSITY