Selena: Faithful Reproduction Of Network Experiment

D. Pediaditakis, *C. Rotsos*, A. W. Moore Computer Lab, University of Cambridge



# INTRODUCTION

- How do I evaluate/test my exciting new network architecture/application/protocol? - Network evolution makes the answer **complex**.
- System sizes make the answer hard.
- Current requirements:
- IOGbE and beyond (IOO GbE?) link speeds.
- Datacenter and Internet host numbers.
- Close affinity between management and flow timescales.
- Complex application behaviours.
- MSN '14, 10/7/14





# AXIS OF NETWORK EXPERIMENTATION

Scalability





# AXIS OF NETWORK EXPERIMENTATION





## AXIS OF NETWORK EXPERIMENTATION replicate specific system behaviour with high precision Fidelity export experimental and accuracy. scenarios and allow replication of the experiment and its results.

Reproducibility





### AXIS OF NETWORK EXPERIMENTATION replicate specific system behaviour with high precision Fidelity export experimental and accuracy. scenarios and allow replication of the experiment and its results. Reproducibility support and gracefully • Resource Scalability < manage network • Time • Fidelity

Scalability dimensions are Pareto complete!

MSN '14, 10/7/14





3



Single-host XEN-based emulation framework, "If it runs on XEN, it runs on SELENA". • <u>Scalability</u>: Time dilation for unmodified guests, explicit scalability trade-off control.

- Fidelity: Link emulation, OF models.
- <u>Reproducibility</u>: XAPI-based Python API, unmodified guest support.

MSN '14, 10/7/14

#### Xen HyperVisor



# REPRODUCIBILITY Topology

```
# Node-0 (H1)
newNode (
 0, "H1"
         # unique ID, name label
 NodeType.LINUX_HOST, # guest template
 [ (1000, # 1st interface, queue len
   "RANDOM", # MAC address
              # IP address
   "10.0.1.2",
   "255.255.255.0", # NetMask
   "10.0.1.1"), # Gateway
   (..), (..) ], # additional interfaces
                 # number of VCPUs
 1,
                 # VCPU Mask
 "4,5,6,7",
 "512M" )
                  # Guest RAM
# Node-1 (H2)
newNode(1, "H2", NodeType.LINUX_HOST, ....)
# Node-2 (Switch)
newNode(2, "Switch", NodeType.LINUX_OVS, ....)
# Link: H1<-->Switch
newLink(
                # Node-0, 1st interface
 (0, 0),
                # Node-2, 1st interface
 (2, 0),
              # Link speed in Mbps
 1000,
 0.2)
                  # Latency (NetEm params)
# Link: H2<-->Switch
newLink( (1, 0), (2, 1), 1000, 0.2) )
```

MSN '14, 10/7/14

## Experiment

```
# Prevent arp broadcasts
setArp(0,"eth1","10.0.1.3","fe:ff:ff:00:01:03"))
setArp(1,"eth1","10.0.1.2","fe:ff:ff:00:01:02"))
# Configure the switch
pushCmd(2,["ovs-vsctl set-fail-mode br0 secure"])
pushCmd(2,["ovs-vsctl add-port br0 eth1"])
pushCmd(2,["ovs-vsctl add-port br0 eth2"])
pushOFRule(2,
    "br0", "add-flow","in_port=1,action=output:2")
pushOFRule(2,
    "br0", "add-flow","in_port=2,action=output:1")
# Run netperf for 10 seconds
pushCmd(0,
    ["netperf -H 10.0.1.3 -t TCP_STREAM -110 -D1"])
```













amp; 2; tem\_mul;

Void pv\_sott\_ratsc(struct vcpu \*v, struct cpu\_user\_regs \*regs, int rdtscp);







## Execution time ns3 : 175m 24s selena : 20m

Execution time ns3 : 172m 51s selena : 40m



- Network emulation is a multidimensional problem.
- - Experimental reproducibility.
  - Explicit trade-off control between execution time and fidelity.
  - In-depth understanding of TDF and scheduling interplay.
  - Improved results with respect to state of the art.

SUMMARY

 SELENA: scalable emulation platform for large network experiments. - Compatible with any cloud application running on PV guests.





## POLICE PUBLIC BOX

# QUESTIONS?

dimosthenis.pediaditakis@cl.cam.ac.uk charalampos.rotsos@cl.cam.ac.uk and rew.moore@cl.cam.ac.uk

