
MSN ’14, 10/7/14

Selena: Faithful
Reproduction Of

Network Experiment

D. Pediaditakis, C. Rotsos, A. W. Moore	

Computer Lab, University of Cambridge

MSN ’14, 10/7/14

INTRODUCTION
• How do I evaluate/test my exciting new network architecture/application/protocol?	

- Network evolution makes the answer complex.	

- System sizes make the answer hard.	

• Current requirements:	

- 10GbE and beyond (100 GbE?) link speeds.	

- Datacenter and Internet host numbers.	

- Close affinity between management and flow timescales. 	

- Complex application behaviours.

2

MSN ’14, 10/7/14

AXIS OF NETWORK EXPERIMENTATION

3

Fidelity

Scalability

Reproducibility

MSN ’14, 10/7/14

AXIS OF NETWORK EXPERIMENTATION

3

Fidelity

Scalability

Reproducibility

replicate specific system
behaviour with high precision
and accuracy.

MSN ’14, 10/7/14

AXIS OF NETWORK EXPERIMENTATION

3

Fidelity

Scalability

Reproducibility

replicate specific system
behaviour with high precision
and accuracy.export experimental

scenarios and allow
replication of the
experiment and its results.

MSN ’14, 10/7/14

AXIS OF NETWORK EXPERIMENTATION

3

Fidelity

Scalability

Reproducibility

Scalability dimensions
are Pareto complete!

• Resource	

• Time	

• Fidelity

replicate specific system
behaviour with high precision
and accuracy.

support and gracefully
manage network
experiments of growing size.

export experimental
scenarios and allow
replication of the
experiment and its results.

MSN ’14, 10/7/14

SELENA ARCHITECTURE

4

�����������296

YHWK���

%ULGJH

YHWK���

HWK�

6ZLWFK

HWK�

*XHVW

46�

HWK�

+�

*XHVW

4�

49� 49�

HWK�

+�

*XHVW

YHWK��� YHWK���

%ULGJH

&RQWURO�GRPDLQ�NHUQHO�VSDFH
;HQ�+\SHU9LVRU

+� +�

6ZLWFK

'LODWHG
7LPH

+RVW +RVW

Fig. 1: SELENA emulation architecture builds on Xen. Emulated hosts run in dilated time, control-domain perceives real time.

B. Reproducible experiments

SELENA exposes a programming API to specify, deploy
and execute network experiments. We share the same views
with the authors of Mininet [1] on experimental reproducibility
and automation. We believe that both requirements are fun-
damental for a network experimentation platform, improving
result repeatability and simplifying the frequent trial-and-
error cycles of applied research. The mechanism outlined
in this section makes experimentation with SELENA sim-
ple and user-friendly. Experimenters can effortlessly re-run
experiments with varying parameters, like queue sizes, link
speeds, topologies and application or even host configurations.
An experiment can be repeated on different platforms and
hosts, requiring only the installation of SELENA and the
script defining the network topology and functionality of the
experiment. The process of defining and executing a network
experiment in SELENA consists of four steps.

Step 1 - Network description

SELENA provides experimenters with a simple Python API
for the definition of the network hosts and their topology, as
well as their configuration parameters. Listing 1 presents the
topology definition of the experiment presented in Figure 1. A
network definition is typically composed by the user and con-
tains two types of object: nodes and links. A node object con-
tains several fields which contain Xen-specific guest resource
configurations (e.g. memory size, virtual CPUs and affinity),
the template of the VM and the node network interfaces along
with their initial configuration (e.g. IP and MAC address,
queue sizes). SELENA provides a set of optimized guest
templates (e.g. Linux hosts, webserver, Open vSwitch) which
can be extended to match the user’s custom requirements for
end-host functionality. The link object is simpler and specifies
the link end-points (node and interface IDs) along with the
link capacity and latency characteristics.

Step 2 - Experiment deployment

In the deployment step, SELENA parses the network
description, checks for common syntax or semantic errors (e.g.
malformed IP addresses, duplicate links, platform resources
availability) and invokes the relevant xen-api callbacks to
create the VMs of the experiment and then installs the required
network bridges in Dom0 to replicate the topology.

Node-0 (H1)
newNode(
0, "H1" # unique ID, name label
NodeType.LINUX_HOST, # guest template
[(1000, # 1st interface, queue len

"RANDOM", # MAC address
"10.0.1.2", # IP address
"255.255.255.0", # NetMask
"10.0.1.1"), # Gateway
(..), (..)], # additional interfaces

1, # number of VCPUs
"4,5,6,7", # VCPU Mask
"512M") # Guest RAM

Node-1 (H2)
newNode(1, "H2", NodeType.LINUX_HOST,)
Node-2 (Switch)
newNode(2, "Switch", NodeType.LINUX_OVS,)
Link: H1<-->Switch
newLink(
(0, 0), # Node-0, 1st interface
(2, 0), # Node-2, 1st interface
1000, # Link speed in Mbps
0.2) # Latency (NetEm params)

Link: H2<-->Switch
newLink((1, 0), (2, 1), 1000, 0.2))

Listing 1: A simple network topology: 2x hosts - 1x switch

Step 3 - Experiment initialization

SELENA uses a distributed control and monitor framework
to synchronize host configuration and scenario execution,
which consists of a low overhead daemon running on each
host and a central coordination service running on Dom0. The
guest daemon is responsible to report host status information to
the coordination service and execute the commands which are
pushed to it. The daemon communicates with the coordination
service using a signaling protocol over the Xenstore service,
thus minimizing interferences with the emulated network’s
communication channels. During initialisation, SELENA boots
sequentially all the VMs which have been created in the
previous step and configures the network interfaces using the
coordination service.

Step 4 - Scenario execution

In the final step, SELENA executes the experimental func-
tionality. Experimental functionality in SELENA is defined
through a separate user-composed Python script, describing
a sequence of time-controlled commands to run on each
guest. When the scenario is executed, individual commands
are “pushed” into the guests through the coordination service

Single-host XEN-based emulation framework, “If it runs on XEN, it runs on SELENA”.	

•Scalability: Time dilation for unmodified guests, explicit scalability trade-off control. 	

•Fidelity: Link emulation, OF models.	

•Reproducibility: XAPI-based Python API, unmodified guest support.	

MSN ’14, 10/7/14

REPRODUCIBILITY

5

Fig. 1: SELENA emulation architecture builds on Xen. Emulated hosts run in dilated time, control-domain perceives real time.

B. Reproducible experiments

SELENA exposes a programming API to specify, deploy
and execute network experiments. We share the same views
with the authors of Mininet [1] on experimental reproducibility
and automation. We believe that both requirements are fun-
damental for a network experimentation platform, improving
result repeatability and simplifying the frequent trial-and-
error cycles of applied research. The mechanism outlined
in this section makes experimentation with SELENA sim-
ple and user-friendly. Experimenters can effortlessly re-run
experiments with varying parameters, like queue sizes, link
speeds, topologies and application or even host configurations.
An experiment can be repeated on different platforms and
hosts, requiring only the installation of SELENA and the
script defining the network topology and functionality of the
experiment. The process of defining and executing a network
experiment in SELENA consists of four steps.

Step 1 - Network description

SELENA provides experimenters with a simple Python API
for the definition of the network hosts and their topology, as
well as their configuration parameters. Listing 1 presents the
topology definition of the experiment presented in Figure 1. A
network definition is typically composed by the user and con-
tains two types of object: nodes and links. A node object con-
tains several fields which contain Xen-specific guest resource
configurations (e.g. memory size, virtual CPUs and affinity),
the template of the VM and the node network interfaces along
with their initial configuration (e.g. IP and MAC address,
queue sizes). SELENA provides a set of optimized guest
templates (e.g. Linux hosts, webserver, Open vSwitch) which
can be extended to match the user’s custom requirements for
end-host functionality. The link object is simpler and specifies
the link end-points (node and interface IDs) along with the
link capacity and latency characteristics.

Step 2 - Experiment deployment

In the deployment step, SELENA parses the network
description, checks for common syntax or semantic errors (e.g.
malformed IP addresses, duplicate links, platform resources
availability) and invokes the relevant xen-api callbacks to
create the VMs of the experiment and then installs the required
network bridges in Dom0 to replicate the topology.

Node-0 (H1)
newNode(

0, "H1" # unique ID, name label
NodeType.LINUX_HOST, # guest template
[(1000, # 1st interface, queue len

"RANDOM", # MAC address
"10.0.1.2", # IP address
"255.255.255.0", # NetMask
"10.0.1.1"), # Gateway
(..), (..)], # additional interfaces

1, # number of VCPUs
"4,5,6,7", # VCPU Mask
"512M") # Guest RAM

Node-1 (H2)
newNode(1, "H2", NodeType.LINUX_HOST,)
Node-2 (Switch)
newNode(2, "Switch", NodeType.LINUX_OVS,)
Link: H1<-->Switch
newLink(

(0, 0), # Node-0, 1st interface
(2, 0), # Node-2, 1st interface
1000, # Link speed in Mbps
0.2) # Latency (NetEm params)

Link: H2<-->Switch
newLink((1, 0), (2, 1), 1000, 0.2))

Listing 1: A simple network topology: 2x hosts - 1x switch

Step 3 - Experiment initialization

SELENA uses a distributed control and monitor framework
to synchronize host configuration and scenario execution,
which consists of a low overhead daemon running on each
host and a central coordination service running on Dom0. The
guest daemon is responsible to report host status information to
the coordination service and execute the commands which are
pushed to it. The daemon communicates with the coordination
service using a signaling protocol over the Xenstore service,
thus minimizing interferences with the emulated network’s
communication channels. During initialisation, SELENA boots
sequentially all the VMs which have been created in the
previous step and configures the network interfaces using the
coordination service.

Step 4 - Scenario execution

In the final step, SELENA executes the experimental func-
tionality. Experimental functionality in SELENA is defined
through a separate user-composed Python script, describing
a sequence of time-controlled commands to run on each
guest. When the scenario is executed, individual commands
are “pushed” into the guests through the coordination service

(via Xenstore).

Listing 2 presents a simple scenario, applied on the network
topology in Listing 1. The scenario installs a static datapath
between the two ports of the switch and creates static ARP
entries to avoid unnecessary broadcast traffic. Then it instructs
H1 to initiate a netperf session and fill the pipe of the virtual
path to H2. Experiments in SELENA can run in dilated virtual
time and scenario commands are executed in virtual time. For
example, a 10 seconds netperf session will last multiple times
longer in real-time for TDF values higher than 1.

Prevent arp broadcasts
setArp(0,"eth1","10.0.1.3","fe:ff:ff:00:01:03"))
setArp(1,"eth1","10.0.1.2","fe:ff:ff:00:01:02"))
Configure the switch
pushCmd(2,["ovs-vsctl set-fail-mode br0 secure"])
pushCmd(2,["ovs-vsctl add-port br0 eth1"])
pushCmd(2,["ovs-vsctl add-port br0 eth2"])
pushOFRule(2,
"br0", "add-flow","in_port=1,action=output:2")

pushOFRule(2,
"br0", "add-flow","in_port=2,action=output:1")

Run netperf for 10 seconds
pushCmd(0,
["netperf -H 10.0.1.3 -t TCP_STREAM -l10 -D1"])

Listing 2: A sample execution scenario description

In order to minimize the time it takes to install, configure
and start large experiments, SELENA implements a series of
optimizations. Firstly, SELENA provides a set of guest tem-
plates containing the minimum required software for network
experimentation. Our Linux-based guests contain a minimal
3.13 kernel and a stripped-down set of applications and tools,
resulting in low memory guest footprint (20 MB) and fast boot
times (2-4 seconds). Secondly, SELENA uses the copy-on-
write disk cloning functionality of Xen, to decrease the time
it takes to replicate a VM’s disk image from our templates.
Finally, after the completion of an experiment, guests are
cached in a guest pool. During Step-3, the deployment script
checks initially in the pool to find any matching guest VMs
created from the same template and reuses it. Nonetheless, the
virtual interfaces of guests and the respective bridges in Dom0
are always clean-installed. Using these techniques SELENA
can cold-boot a 52 node topology in ⇡ 130 seconds.

C. Scaling resources via elastic time

An inherent limitation of real-time emulation is resource
scalability for high throughput or node-count experiments. For
example, emulating the packet-level behavior of a 40 GbE
link in real time requires a high event rate and a potentially
unmanageable CPU load. Effectively, fidelity is upper-bounded
by the ability of the platform to scale the experiment compu-
tation and match the emulated performance properties of the
system. SELENA overcomes this limitation by scaling time.
In order to achieve this, we implement a time virtualization
mechanism in the hypervisor, which allows an experimenter
to slow down time progression on guests and effectively scale
network, disk IO and CPU resources. Our approach is similar
to the bullet time video effect: augmented per-frame time
enables the viewer to perceive more details from a scene.

Fig. 2: Architecture of the various timekeeping facilities of a
Linux PVOPS kernel

With respect to Figure 1, emulated nodes (H1,H2,SW) run
inside a sandbox using a common time-dilation factor (TDF),
while Dom0 and the hypervisor operate in real-time. SELENA
adjusts all guest time sources by the TDF parameter, controling
effectively the perception of time both at the kernel and the
user-space of the guest VM. Each guest continues to receive
a fair fraction of available hardware resources, unaffected by
time virtualization. For an experiment with TDF = 2, a virtual
time of 1 second lasts 2 seconds of real time and the perceived
network, disk IO rates and CPU appear doubled within the
virtual time domain.

Having created the necessary “computational headroom”
to emulate faster IO and processing, the users may chose to
further adjust the speed of individual resources for guests. The
amount of CPU time that a guest receives can be adjusted
via the weight and cap parameters of Xen’s credit2 sched-
uler [24] (in non work-conserving mode). Dilating time by
a large factor, however, can occasionally introduce transient
scheduling inaccuracies. This effect can be minimized by
tuning the Xen scheduler parameters, using a scaled time-slice
and an increased ratelimit value (controls the minimum non-
preemptive VM scheduling duration). In addition, disk IO rates
can be limited from within guests via the cgroups mechanism
and its blkio controller.

Implementation details

SELENA provides time dilation control without requir-
ing modifications in guest OS. Our approach takes advan-
tage of Linux PVOPS capabilities, which provides out of
the box in-kernel support for Xen para-virtualized drivers.
The resulting modifications required to implement time vir-
tualization were limited only in the Xen hypervisor source
code (⇡ 400 LoC). We have successfully patched a late
version of the Xen hypervisor (v4.3). In order to avoid
xen-api toolstack modifications, we exposed TDF control
through the sysfs filesystem, using a modified domain creation
hypercall(XEN DOMCT L createdomain).

In order to present the functionality of time virtualisation
in SELENA, we initially describe time functionality in Xen.

Topology

Experiment

MSN ’14, 10/7/14

TIME DILATION

6

(via Xenstore).

Listing 2 presents a simple scenario, applied on the network
topology in Listing 1. The scenario installs a static datapath
between the two ports of the switch and creates static ARP
entries to avoid unnecessary broadcast traffic. Then it instructs
H1 to initiate a netperf session and fill the pipe of the virtual
path to H2. Experiments in SELENA can run in dilated virtual
time and scenario commands are executed in virtual time. For
example, a 10 seconds netperf session will last multiple times
longer in real-time for TDF values higher than 1.

Prevent arp broadcasts
setArp(0,"eth1","10.0.1.3","fe:ff:ff:00:01:03"))
setArp(1,"eth1","10.0.1.2","fe:ff:ff:00:01:02"))
Configure the switch
pushCmd(2,["ovs-vsctl set-fail-mode br0 secure"])
pushCmd(2,["ovs-vsctl add-port br0 eth1"])
pushCmd(2,["ovs-vsctl add-port br0 eth2"])
pushOFRule(2,
"br0", "add-flow","in_port=1,action=output:2")

pushOFRule(2,
"br0", "add-flow","in_port=2,action=output:1")

Run netperf for 10 seconds
pushCmd(0,
["netperf -H 10.0.1.3 -t TCP_STREAM -l10 -D1"])

Listing 2: A sample execution scenario description

In order to minimize the time it takes to install, configure
and start large experiments, SELENA implements a series of
optimizations. Firstly, SELENA provides a set of guest tem-
plates containing the minimum required software for network
experimentation. Our Linux-based guests contain a minimal
3.13 kernel and a stripped-down set of applications and tools,
resulting in low memory guest footprint (20 MB) and fast boot
times (2-4 seconds). Secondly, SELENA uses the copy-on-
write disk cloning functionality of Xen, to decrease the time
it takes to replicate a VM’s disk image from our templates.
Finally, after the completion of an experiment, guests are
cached in a guest pool. During Step-3, the deployment script
checks initially in the pool to find any matching guest VMs
created from the same template and reuses it. Nonetheless, the
virtual interfaces of guests and the respective bridges in Dom0
are always clean-installed. Using these techniques SELENA
can cold-boot a 52 node topology in ⇡ 130 seconds.

C. Scaling resources via elastic time

An inherent limitation of real-time emulation is resource
scalability for high throughput or node-count experiments. For
example, emulating the packet-level behavior of a 40 GbE
link in real time requires a high event rate and a potentially
unmanageable CPU load. Effectively, fidelity is upper-bounded
by the ability of the platform to scale the experiment compu-
tation and match the emulated performance properties of the
system. SELENA overcomes this limitation by scaling time.
In order to achieve this, we implement a time virtualization
mechanism in the hypervisor, which allows an experimenter
to slow down time progression on guests and effectively scale
network, disk IO and CPU resources. Our approach is similar
to the bullet time video effect: augmented per-frame time
enables the viewer to perceive more details from a scene.

3URFHVV
DFFRXQWLQJ

3URFHVV
SURILOLQJ -LIILHV /RZ�UHV

WLPHUV

&ORFN�(YHQW

,65

;HQ�9,54
;HQ
76&

;HQ�
&ORFN�6RXUFH

&ORFN�7LFN
,54�

+DQGOHU

&ORFN�6\QF 72'

+LJK�UHV
WLPHUV

7LPHNHHSLQJ
[WLPH���ZDOOBWLPH

WLFNBVFKHGBWLPHU

/LQX[�*XHVW

;(1��+\SHUYLVRU
1DWLYH��RU��(PXODWHG�

VHW�
QH[W�
HYHQW

9,54B7,0(5

+
\S
HU
YL
VR
UB
VH
WB
WLP

HU
BR
S

Fig. 2: Architecture of the various timekeeping facilities of a
Linux PVOPS kernel

With respect to Figure 1, emulated nodes (H1,H2,SW) run
inside a sandbox using a common time-dilation factor (TDF),
while Dom0 and the hypervisor operate in real-time. SELENA
adjusts all guest time sources by the TDF parameter, controling
effectively the perception of time both at the kernel and the
user-space of the guest VM. Each guest continues to receive
a fair fraction of available hardware resources, unaffected by
time virtualization. For an experiment with TDF = 2, a virtual
time of 1 second lasts 2 seconds of real time and the perceived
network, disk IO rates and CPU appear doubled within the
virtual time domain.

Having created the necessary “computational headroom”
to emulate faster IO and processing, the users may chose to
further adjust the speed of individual resources for guests. The
amount of CPU time that a guest receives can be adjusted
via the weight and cap parameters of Xen’s credit2 sched-
uler [24] (in non work-conserving mode). Dilating time by
a large factor, however, can occasionally introduce transient
scheduling inaccuracies. This effect can be minimized by
tuning the Xen scheduler parameters, using a scaled time-slice
and an increased ratelimit value (controls the minimum non-
preemptive VM scheduling duration). In addition, disk IO rates
can be limited from within guests via the cgroups mechanism
and its blkio controller.

Implementation details

SELENA provides time dilation control without requir-
ing modifications in guest OS. Our approach takes advan-
tage of Linux PVOPS capabilities, which provides out of
the box in-kernel support for Xen para-virtualized drivers.
The resulting modifications required to implement time vir-
tualization were limited only in the Xen hypervisor source
code (⇡ 400 LoC). We have successfully patched a late
version of the Xen hypervisor (v4.3). In order to avoid
xen-api toolstack modifications, we exposed TDF control
through the sysfs filesystem, using a modified domain creation
hypercall(XEN DOMCT L createdomain).

In order to present the functionality of time virtualisation
in SELENA, we initially describe time functionality in Xen.

MSN ’14, 10/7/14

TIME DILATION

6

(via Xenstore).

Listing 2 presents a simple scenario, applied on the network
topology in Listing 1. The scenario installs a static datapath
between the two ports of the switch and creates static ARP
entries to avoid unnecessary broadcast traffic. Then it instructs
H1 to initiate a netperf session and fill the pipe of the virtual
path to H2. Experiments in SELENA can run in dilated virtual
time and scenario commands are executed in virtual time. For
example, a 10 seconds netperf session will last multiple times
longer in real-time for TDF values higher than 1.

Prevent arp broadcasts
setArp(0,"eth1","10.0.1.3","fe:ff:ff:00:01:03"))
setArp(1,"eth1","10.0.1.2","fe:ff:ff:00:01:02"))
Configure the switch
pushCmd(2,["ovs-vsctl set-fail-mode br0 secure"])
pushCmd(2,["ovs-vsctl add-port br0 eth1"])
pushCmd(2,["ovs-vsctl add-port br0 eth2"])
pushOFRule(2,
"br0", "add-flow","in_port=1,action=output:2")

pushOFRule(2,
"br0", "add-flow","in_port=2,action=output:1")

Run netperf for 10 seconds
pushCmd(0,
["netperf -H 10.0.1.3 -t TCP_STREAM -l10 -D1"])

Listing 2: A sample execution scenario description

In order to minimize the time it takes to install, configure
and start large experiments, SELENA implements a series of
optimizations. Firstly, SELENA provides a set of guest tem-
plates containing the minimum required software for network
experimentation. Our Linux-based guests contain a minimal
3.13 kernel and a stripped-down set of applications and tools,
resulting in low memory guest footprint (20 MB) and fast boot
times (2-4 seconds). Secondly, SELENA uses the copy-on-
write disk cloning functionality of Xen, to decrease the time
it takes to replicate a VM’s disk image from our templates.
Finally, after the completion of an experiment, guests are
cached in a guest pool. During Step-3, the deployment script
checks initially in the pool to find any matching guest VMs
created from the same template and reuses it. Nonetheless, the
virtual interfaces of guests and the respective bridges in Dom0
are always clean-installed. Using these techniques SELENA
can cold-boot a 52 node topology in ⇡ 130 seconds.

C. Scaling resources via elastic time

An inherent limitation of real-time emulation is resource
scalability for high throughput or node-count experiments. For
example, emulating the packet-level behavior of a 40 GbE
link in real time requires a high event rate and a potentially
unmanageable CPU load. Effectively, fidelity is upper-bounded
by the ability of the platform to scale the experiment compu-
tation and match the emulated performance properties of the
system. SELENA overcomes this limitation by scaling time.
In order to achieve this, we implement a time virtualization
mechanism in the hypervisor, which allows an experimenter
to slow down time progression on guests and effectively scale
network, disk IO and CPU resources. Our approach is similar
to the bullet time video effect: augmented per-frame time
enables the viewer to perceive more details from a scene.

3URFHVV
DFFRXQWLQJ

3URFHVV
SURILOLQJ -LIILHV /RZ�UHV

WLPHUV

&ORFN�(YHQW

,65

;HQ�9,54
;HQ
76&

;HQ�
&ORFN�6RXUFH

&ORFN�7LFN
,54�

+DQGOHU

&ORFN�6\QF 72'

+LJK�UHV
WLPHUV

7LPHNHHSLQJ
[WLPH���ZDOOBWLPH

WLFNBVFKHGBWLPHU

/LQX[�*XHVW

;(1��+\SHUYLVRU
1DWLYH��RU��(PXODWHG�

VHW�
QH[W�
HYHQW

9,54B7,0(5

+
\S
HU
YL
VR
UB
VH
WB
WLP

HU
BR
S

Fig. 2: Architecture of the various timekeeping facilities of a
Linux PVOPS kernel

With respect to Figure 1, emulated nodes (H1,H2,SW) run
inside a sandbox using a common time-dilation factor (TDF),
while Dom0 and the hypervisor operate in real-time. SELENA
adjusts all guest time sources by the TDF parameter, controling
effectively the perception of time both at the kernel and the
user-space of the guest VM. Each guest continues to receive
a fair fraction of available hardware resources, unaffected by
time virtualization. For an experiment with TDF = 2, a virtual
time of 1 second lasts 2 seconds of real time and the perceived
network, disk IO rates and CPU appear doubled within the
virtual time domain.

Having created the necessary “computational headroom”
to emulate faster IO and processing, the users may chose to
further adjust the speed of individual resources for guests. The
amount of CPU time that a guest receives can be adjusted
via the weight and cap parameters of Xen’s credit2 sched-
uler [24] (in non work-conserving mode). Dilating time by
a large factor, however, can occasionally introduce transient
scheduling inaccuracies. This effect can be minimized by
tuning the Xen scheduler parameters, using a scaled time-slice
and an increased ratelimit value (controls the minimum non-
preemptive VM scheduling duration). In addition, disk IO rates
can be limited from within guests via the cgroups mechanism
and its blkio controller.

Implementation details

SELENA provides time dilation control without requir-
ing modifications in guest OS. Our approach takes advan-
tage of Linux PVOPS capabilities, which provides out of
the box in-kernel support for Xen para-virtualized drivers.
The resulting modifications required to implement time vir-
tualization were limited only in the Xen hypervisor source
code (⇡ 400 LoC). We have successfully patched a late
version of the Xen hypervisor (v4.3). In order to avoid
xen-api toolstack modifications, we exposed TDF control
through the sysfs filesystem, using a modified domain creation
hypercall(XEN DOMCT L createdomain).

In order to present the functionality of time virtualisation
in SELENA, we initially describe time functionality in Xen.

Time source
struct	 shared_info	 {	
	 struct	 pvclock_vcpu_time_info	 {	
	 	 ….	
	 	 u64	 tsc_timestamp;	
	 	 u64	 system_time;	
	 	 u32	 tsc_to_system_mul;	
	 	 …	
	 }	
}	
!
or	
!
void	 pv_soft_rdtsc(struct	 vcpu	 *v,	 	
	 	 	 	 	 	 	 struct	 cpu_user_regs	 *regs,	 	
	 	 	 	 	 	 	 int	 rdtscp);

MSN ’14, 10/7/14

TIME DILATION

6

(via Xenstore).

Listing 2 presents a simple scenario, applied on the network
topology in Listing 1. The scenario installs a static datapath
between the two ports of the switch and creates static ARP
entries to avoid unnecessary broadcast traffic. Then it instructs
H1 to initiate a netperf session and fill the pipe of the virtual
path to H2. Experiments in SELENA can run in dilated virtual
time and scenario commands are executed in virtual time. For
example, a 10 seconds netperf session will last multiple times
longer in real-time for TDF values higher than 1.

Prevent arp broadcasts
setArp(0,"eth1","10.0.1.3","fe:ff:ff:00:01:03"))
setArp(1,"eth1","10.0.1.2","fe:ff:ff:00:01:02"))
Configure the switch
pushCmd(2,["ovs-vsctl set-fail-mode br0 secure"])
pushCmd(2,["ovs-vsctl add-port br0 eth1"])
pushCmd(2,["ovs-vsctl add-port br0 eth2"])
pushOFRule(2,
"br0", "add-flow","in_port=1,action=output:2")

pushOFRule(2,
"br0", "add-flow","in_port=2,action=output:1")

Run netperf for 10 seconds
pushCmd(0,
["netperf -H 10.0.1.3 -t TCP_STREAM -l10 -D1"])

Listing 2: A sample execution scenario description

In order to minimize the time it takes to install, configure
and start large experiments, SELENA implements a series of
optimizations. Firstly, SELENA provides a set of guest tem-
plates containing the minimum required software for network
experimentation. Our Linux-based guests contain a minimal
3.13 kernel and a stripped-down set of applications and tools,
resulting in low memory guest footprint (20 MB) and fast boot
times (2-4 seconds). Secondly, SELENA uses the copy-on-
write disk cloning functionality of Xen, to decrease the time
it takes to replicate a VM’s disk image from our templates.
Finally, after the completion of an experiment, guests are
cached in a guest pool. During Step-3, the deployment script
checks initially in the pool to find any matching guest VMs
created from the same template and reuses it. Nonetheless, the
virtual interfaces of guests and the respective bridges in Dom0
are always clean-installed. Using these techniques SELENA
can cold-boot a 52 node topology in ⇡ 130 seconds.

C. Scaling resources via elastic time

An inherent limitation of real-time emulation is resource
scalability for high throughput or node-count experiments. For
example, emulating the packet-level behavior of a 40 GbE
link in real time requires a high event rate and a potentially
unmanageable CPU load. Effectively, fidelity is upper-bounded
by the ability of the platform to scale the experiment compu-
tation and match the emulated performance properties of the
system. SELENA overcomes this limitation by scaling time.
In order to achieve this, we implement a time virtualization
mechanism in the hypervisor, which allows an experimenter
to slow down time progression on guests and effectively scale
network, disk IO and CPU resources. Our approach is similar
to the bullet time video effect: augmented per-frame time
enables the viewer to perceive more details from a scene.

3URFHVV
DFFRXQWLQJ

3URFHVV
SURILOLQJ -LIILHV /RZ�UHV

WLPHUV

&ORFN�(YHQW

,65

;HQ�9,54
;HQ
76&

;HQ�
&ORFN�6RXUFH

&ORFN�7LFN
,54�

+DQGOHU

&ORFN�6\QF 72'

+LJK�UHV
WLPHUV

7LPHNHHSLQJ
[WLPH���ZDOOBWLPH

WLFNBVFKHGBWLPHU

/LQX[�*XHVW

;(1��+\SHUYLVRU
1DWLYH��RU��(PXODWHG�

VHW�
QH[W�
HYHQW

9,54B7,0(5

+
\S
HU
YL
VR
UB
VH
WB
WLP

HU
BR
S

Fig. 2: Architecture of the various timekeeping facilities of a
Linux PVOPS kernel

With respect to Figure 1, emulated nodes (H1,H2,SW) run
inside a sandbox using a common time-dilation factor (TDF),
while Dom0 and the hypervisor operate in real-time. SELENA
adjusts all guest time sources by the TDF parameter, controling
effectively the perception of time both at the kernel and the
user-space of the guest VM. Each guest continues to receive
a fair fraction of available hardware resources, unaffected by
time virtualization. For an experiment with TDF = 2, a virtual
time of 1 second lasts 2 seconds of real time and the perceived
network, disk IO rates and CPU appear doubled within the
virtual time domain.

Having created the necessary “computational headroom”
to emulate faster IO and processing, the users may chose to
further adjust the speed of individual resources for guests. The
amount of CPU time that a guest receives can be adjusted
via the weight and cap parameters of Xen’s credit2 sched-
uler [24] (in non work-conserving mode). Dilating time by
a large factor, however, can occasionally introduce transient
scheduling inaccuracies. This effect can be minimized by
tuning the Xen scheduler parameters, using a scaled time-slice
and an increased ratelimit value (controls the minimum non-
preemptive VM scheduling duration). In addition, disk IO rates
can be limited from within guests via the cgroups mechanism
and its blkio controller.

Implementation details

SELENA provides time dilation control without requir-
ing modifications in guest OS. Our approach takes advan-
tage of Linux PVOPS capabilities, which provides out of
the box in-kernel support for Xen para-virtualized drivers.
The resulting modifications required to implement time vir-
tualization were limited only in the Xen hypervisor source
code (⇡ 400 LoC). We have successfully patched a late
version of the Xen hypervisor (v4.3). In order to avoid
xen-api toolstack modifications, we exposed TDF control
through the sysfs filesystem, using a modified domain creation
hypercall(XEN DOMCT L createdomain).

In order to present the functionality of time virtualisation
in SELENA, we initially describe time functionality in Xen.

Time Event Scheduling Time source
struct	 shared_info	 {	
	 struct	 pvclock_vcpu_time_info	 {	
	 	 ….	
	 	 u64	 tsc_timestamp;	
	 	 u64	 system_time;	
	 	 u32	 tsc_to_system_mul;	
	 	 …	
	 }	
}	
!
or	
!
void	 pv_soft_rdtsc(struct	 vcpu	 *v,	 	
	 	 	 	 	 	 	 struct	 cpu_user_regs	 *regs,	 	
	 	 	 	 	 	 	 int	 rdtscp);

MSN ’14, 10/7/14

TIME DILATION

6

(via Xenstore).

Listing 2 presents a simple scenario, applied on the network
topology in Listing 1. The scenario installs a static datapath
between the two ports of the switch and creates static ARP
entries to avoid unnecessary broadcast traffic. Then it instructs
H1 to initiate a netperf session and fill the pipe of the virtual
path to H2. Experiments in SELENA can run in dilated virtual
time and scenario commands are executed in virtual time. For
example, a 10 seconds netperf session will last multiple times
longer in real-time for TDF values higher than 1.

Prevent arp broadcasts
setArp(0,"eth1","10.0.1.3","fe:ff:ff:00:01:03"))
setArp(1,"eth1","10.0.1.2","fe:ff:ff:00:01:02"))
Configure the switch
pushCmd(2,["ovs-vsctl set-fail-mode br0 secure"])
pushCmd(2,["ovs-vsctl add-port br0 eth1"])
pushCmd(2,["ovs-vsctl add-port br0 eth2"])
pushOFRule(2,
"br0", "add-flow","in_port=1,action=output:2")

pushOFRule(2,
"br0", "add-flow","in_port=2,action=output:1")

Run netperf for 10 seconds
pushCmd(0,
["netperf -H 10.0.1.3 -t TCP_STREAM -l10 -D1"])

Listing 2: A sample execution scenario description

In order to minimize the time it takes to install, configure
and start large experiments, SELENA implements a series of
optimizations. Firstly, SELENA provides a set of guest tem-
plates containing the minimum required software for network
experimentation. Our Linux-based guests contain a minimal
3.13 kernel and a stripped-down set of applications and tools,
resulting in low memory guest footprint (20 MB) and fast boot
times (2-4 seconds). Secondly, SELENA uses the copy-on-
write disk cloning functionality of Xen, to decrease the time
it takes to replicate a VM’s disk image from our templates.
Finally, after the completion of an experiment, guests are
cached in a guest pool. During Step-3, the deployment script
checks initially in the pool to find any matching guest VMs
created from the same template and reuses it. Nonetheless, the
virtual interfaces of guests and the respective bridges in Dom0
are always clean-installed. Using these techniques SELENA
can cold-boot a 52 node topology in ⇡ 130 seconds.

C. Scaling resources via elastic time

An inherent limitation of real-time emulation is resource
scalability for high throughput or node-count experiments. For
example, emulating the packet-level behavior of a 40 GbE
link in real time requires a high event rate and a potentially
unmanageable CPU load. Effectively, fidelity is upper-bounded
by the ability of the platform to scale the experiment compu-
tation and match the emulated performance properties of the
system. SELENA overcomes this limitation by scaling time.
In order to achieve this, we implement a time virtualization
mechanism in the hypervisor, which allows an experimenter
to slow down time progression on guests and effectively scale
network, disk IO and CPU resources. Our approach is similar
to the bullet time video effect: augmented per-frame time
enables the viewer to perceive more details from a scene.

3URFHVV
DFFRXQWLQJ

3URFHVV
SURILOLQJ -LIILHV /RZ�UHV

WLPHUV

&ORFN�(YHQW

,65

;HQ�9,54
;HQ
76&

;HQ�
&ORFN�6RXUFH

&ORFN�7LFN
,54�

+DQGOHU

&ORFN�6\QF 72'

+LJK�UHV
WLPHUV

7LPHNHHSLQJ
[WLPH���ZDOOBWLPH

WLFNBVFKHGBWLPHU

/LQX[�*XHVW

;(1��+\SHUYLVRU
1DWLYH��RU��(PXODWHG�

VHW�
QH[W�
HYHQW

9,54B7,0(5

+
\S
HU
YL
VR
UB
VH
WB
WLP

HU
BR
S

Fig. 2: Architecture of the various timekeeping facilities of a
Linux PVOPS kernel

With respect to Figure 1, emulated nodes (H1,H2,SW) run
inside a sandbox using a common time-dilation factor (TDF),
while Dom0 and the hypervisor operate in real-time. SELENA
adjusts all guest time sources by the TDF parameter, controling
effectively the perception of time both at the kernel and the
user-space of the guest VM. Each guest continues to receive
a fair fraction of available hardware resources, unaffected by
time virtualization. For an experiment with TDF = 2, a virtual
time of 1 second lasts 2 seconds of real time and the perceived
network, disk IO rates and CPU appear doubled within the
virtual time domain.

Having created the necessary “computational headroom”
to emulate faster IO and processing, the users may chose to
further adjust the speed of individual resources for guests. The
amount of CPU time that a guest receives can be adjusted
via the weight and cap parameters of Xen’s credit2 sched-
uler [24] (in non work-conserving mode). Dilating time by
a large factor, however, can occasionally introduce transient
scheduling inaccuracies. This effect can be minimized by
tuning the Xen scheduler parameters, using a scaled time-slice
and an increased ratelimit value (controls the minimum non-
preemptive VM scheduling duration). In addition, disk IO rates
can be limited from within guests via the cgroups mechanism
and its blkio controller.

Implementation details

SELENA provides time dilation control without requir-
ing modifications in guest OS. Our approach takes advan-
tage of Linux PVOPS capabilities, which provides out of
the box in-kernel support for Xen para-virtualized drivers.
The resulting modifications required to implement time vir-
tualization were limited only in the Xen hypervisor source
code (⇡ 400 LoC). We have successfully patched a late
version of the Xen hypervisor (v4.3). In order to avoid
xen-api toolstack modifications, we exposed TDF control
through the sysfs filesystem, using a modified domain creation
hypercall(XEN DOMCT L createdomain).

In order to present the functionality of time virtualisation
in SELENA, we initially describe time functionality in Xen.

Time Event Scheduling Time source
struct	 shared_info	 {	
	 struct	 pvclock_vcpu_time_info	 {	
	 	 ….	
	 	 u64	 tsc_timestamp;	
	 	 u64	 system_time;	
	 	 u32	 tsc_to_system_mul;	
	 	 …	
	 }	
}	
!
or	
!
void	 pv_soft_rdtsc(struct	 vcpu	 *v,	 	
	 	 	 	 	 	 	 struct	 cpu_user_regs	 *regs,	 	
	 	 	 	 	 	 	 int	 rdtscp);

MSN ’14, 10/7/14

EVALUATION

7

Fig. 5: Aggregate achieved throughput between real,
SELENA, Mininet and ns-3 (star topology).

throughput of 210 Mbps). We conclude that TDF= 10 provides
sufficient accuracy and throughput stability for the complete
duration of the experiment.

Figure 5 presents the achievable throughput on the 10
Gbps link for the duration of the experiment, using 100
msec observation window. We used TDF = 10 for SELENA
which, based on the previous findings, is sufficient to emulate
accurately the throughput of the real system. Mininet is able
to achieve a maximum of 2.3 Gbps throughput, with non-
negligible variance, primarily due to poor scalability of CPU
resources. Despite the extensive optimization of Mininet, the
platform cannot mitigate CPU and memory bottlenecks in high
throughput emulations. ns-3 exhibits higher performance than
Mininet achieving a maximum throughput of 4-5 Gbps, but
still significantly lower than the real. After analyzing the source
code of the ns-3 platform, we concluded that the low aggregate
performance is due to poor scalability of the CSMA link model
at high rates, the only wired Ethernet model available in the
platform for full duplex links.

C. Flow-level fidelity

This section evaluates the flow-level fidelity of SELENA
using the fat-tree topology. For this experiment we use short-
lived TCP flow completion times to assess the accuracy of our
platform, a metric which is widely used to characterize both the
performance and fairness of TCP in the context of datacenter
networks [34]. On each host we run both a data-generation and
data-sink service and traffic flows in both directions between
four pre-defined client pairs (8 Gbps aggregate bandwidth).
The data-sink service of each-client receives data from 10
concurrent TCP flows (all form the same source). When a
flow transfers 10 MB worth of data it is terminated and a
new transfer request is initiated immediately, thus maintaing
constantly 10 concurrent flows per host. We implemented this
traffic generation model in C using the POSIX API and the
async epoll-based libev API. The generator model is used
in SELENA, real and Mininet experiments, while for ns-3 we
build a similar application using the TCP abstraction.

Figure 6 presents the empirical cumulative distribution
(CDF) for a wide range of TFD values using SELENA,
as well as, the results collected from the real, Mininet and

Fig. 6: Comparison of flow completion time CDF between
SELENA, real, Mininet and ns-3 (fat-tree topology).

ns-3 platforms. Additionally, Table II presents the number
of completed flows for the duration of the experiment and
the mean and variance of flow completion times for each
experiment. For SELENA, we notice that TDF = 1 is highly
unrealistic, with 6 times higher delay than the real system and
significant variance. Nonetheless, as we increase TDF values,
the distribution of completion times starts to approximate the
behavior of the real system. A TDF = 5 reduces six times the
mean latency, while higher TDF values improvement further
the experimental fidelity. For TDF = 20 the mean completion
time is only 10 msec different from the real system, while the
variance is equally reduced.

Mininet increases the mean flow completion times by a
factor of 3 and exhibits significant variance, also visible by
the longer tail of the cummulative distribution. Note that the
majority of the flows in Mininet exhibit completion times
between 2.5 and 4.5 seconds. There are also many outliers
with a maximum delay of 7 seconds. Mininet clearly cannot
support the required aggregate throughput of 8 Gbps using the
fat-tree topology and therefore with a lower available bisection
capacity flows require more time to complete. ns-3 on the other
hand, has an extremely low variance with a median completion
time of 2.5 seconds.

Table III evaluates the time scalability of the tested plat-

Platform Flows Mean std
Real 10071 0.956 0.074
Mininet 2957 3.271 0.787
SELENA TDF = 1 1512 6.469 3.236
SELENA TDF = 5 7161 1.344 1.144
SELENA TDF = 10 9285 1.036 1.035
SELENA TDF = 20 9935 0.966 0.16

TABLE II: Comparison of flow-completion time statistics.

Star Fat-tree
Platform Topology Topology
Mininet 120s 120s
ns-3 175m 24s 172m 51s
SELENA TDF = 1 120s 120s
SELENA TDF = 20 40m 40m

TABLE III: Comparison of wall-clock execution times.

Fig. 5: Aggregate achieved throughput between real,
SELENA, Mininet and ns-3 (star topology).

throughput of 210 Mbps). We conclude that TDF= 10 provides
sufficient accuracy and throughput stability for the complete
duration of the experiment.

Figure 5 presents the achievable throughput on the 10
Gbps link for the duration of the experiment, using 100
msec observation window. We used TDF = 10 for SELENA
which, based on the previous findings, is sufficient to emulate
accurately the throughput of the real system. Mininet is able
to achieve a maximum of 2.3 Gbps throughput, with non-
negligible variance, primarily due to poor scalability of CPU
resources. Despite the extensive optimization of Mininet, the
platform cannot mitigate CPU and memory bottlenecks in high
throughput emulations. ns-3 exhibits higher performance than
Mininet achieving a maximum throughput of 4-5 Gbps, but
still significantly lower than the real. After analyzing the source
code of the ns-3 platform, we concluded that the low aggregate
performance is due to poor scalability of the CSMA link model
at high rates, the only wired Ethernet model available in the
platform for full duplex links.

C. Flow-level fidelity

This section evaluates the flow-level fidelity of SELENA
using the fat-tree topology. For this experiment we use short-
lived TCP flow completion times to assess the accuracy of our
platform, a metric which is widely used to characterize both the
performance and fairness of TCP in the context of datacenter
networks [34]. On each host we run both a data-generation and
data-sink service and traffic flows in both directions between
four pre-defined client pairs (8 Gbps aggregate bandwidth).
The data-sink service of each-client receives data from 10
concurrent TCP flows (all form the same source). When a
flow transfers 10 MB worth of data it is terminated and a
new transfer request is initiated immediately, thus maintaing
constantly 10 concurrent flows per host. We implemented this
traffic generation model in C using the POSIX API and the
async epoll-based libev API. The generator model is used
in SELENA, real and Mininet experiments, while for ns-3 we
build a similar application using the TCP abstraction.

Figure 6 presents the empirical cumulative distribution
(CDF) for a wide range of TFD values using SELENA,
as well as, the results collected from the real, Mininet and

Fig. 6: Comparison of flow completion time CDF between
SELENA, real, Mininet and ns-3 (fat-tree topology).

ns-3 platforms. Additionally, Table II presents the number
of completed flows for the duration of the experiment and
the mean and variance of flow completion times for each
experiment. For SELENA, we notice that TDF = 1 is highly
unrealistic, with 6 times higher delay than the real system and
significant variance. Nonetheless, as we increase TDF values,
the distribution of completion times starts to approximate the
behavior of the real system. A TDF = 5 reduces six times the
mean latency, while higher TDF values improvement further
the experimental fidelity. For TDF = 20 the mean completion
time is only 10 msec different from the real system, while the
variance is equally reduced.

Mininet increases the mean flow completion times by a
factor of 3 and exhibits significant variance, also visible by
the longer tail of the cummulative distribution. Note that the
majority of the flows in Mininet exhibit completion times
between 2.5 and 4.5 seconds. There are also many outliers
with a maximum delay of 7 seconds. Mininet clearly cannot
support the required aggregate throughput of 8 Gbps using the
fat-tree topology and therefore with a lower available bisection
capacity flows require more time to complete. ns-3 on the other
hand, has an extremely low variance with a median completion
time of 2.5 seconds.

Table III evaluates the time scalability of the tested plat-

Platform Flows Mean std
Real 10071 0.956 0.074
Mininet 2957 3.271 0.787
SELENA TDF = 1 1512 6.469 3.236
SELENA TDF = 5 7161 1.344 1.144
SELENA TDF = 10 9285 1.036 1.035
SELENA TDF = 20 9935 0.966 0.16

TABLE II: Comparison of flow-completion time statistics.

Star Fat-tree
Platform Topology Topology
Mininet 120s 120s
ns-3 175m 24s 172m 51s
SELENA TDF = 1 120s 120s
SELENA TDF = 20 40m 40m

TABLE III: Comparison of wall-clock execution times.

[29]). Nonetheless, recent measurement studies of switch de-
vices [4], [8] have highlighted a significant variability on the
performance of the control plane, especially in available hard-
ware OpenFlow switch implementations. This performance
variability can be explained by a number of design choices,
like the scalability of the communication channel between
the switch silicon, the switch co-processor and the firmware
architecture. However, existing solutions are not easy to reflect
these performance properties and can only replicate simplified
network device models, considering only per-packet processing
latency and buffer sizes.

SELENA provides a tunable switch model that takes ac-
count of the tight coupling between the flow and management
timescales of the network [30]. This allows users to study how
traditional and new control plane performance characteristics
affect the overall network performance. More specifically, we
include a customizable switch implementation which supports
OpenFlow [31] and builds on the Mirage framework [32].
This switch emulation model provides a simple and extensible
packet processing pipeline, to which we add a rate adjustment
mechanism for the different control plane functionalities. Our
model exposes currently performance emulation primitives
for the flow table management mechanism, the packet inter-
ception and injection mechanism and the counters extraction
functionality of the switch. In Section IV-E, we describe the
methodology we followed to integrate a switch model in a
SELENA experiment and to calibrate it in order to match the
performance characteristics of a production switch.

IV. EVALUATION

In this section we present an in-depth evaluation of SE-
LENA’s performance and scalability. Initially, we introduce
the reader to the measurement apparatus of our evalua-
tion (§ IV-A). We compare the experimental fidelity provided
by SELENA against a real system and other established
platforms, namely Mininet and ns-3. Our evaluation considers
fidelity both in terms of high-throughput links (§ IV-B), as well
as larger networks (§ IV-C). Finally, we present a limit analysis
of our time virtualization technique (§ IV-D) and evaluate the
performance realism of real applications in SELENA (§ IV-E).

A. Experimental Setup

In order to evaluate the performance of SELENA, we use
two popular network topologies: a star topology (Figure 3(a))
and a special case of a CLOS, a (fat-tree topology with 4-
port switches and 2 pods (Figure 3(b)). We employ these two
distinct topologies as they provide a simple mechanism to test
both throughput and scalability of the system for high-density
setups. We replicate the experiments of each topology four
times: in SELENA, in a real setup, in Mininet and in ns-3.

In the real setup, the star topology consists of a quad-core
server (Intel Xeon E5-2643, 128GB RAM), 10 data generating
hosts (Intel Core 2 Q6600, 4GB) and a network switch (Pica8
P-3290). The server is equipped with a 10GbE card (Solarflare
SFC9020) and acts as the data-sink. The clients are equiped
with 1 GbE cards (Intel 82571EB) and the switch offers both
1 and 10 GbE interfaces. We monitor the link to the data
sink using a DAG card and an optical splitter. For the fat-
tree topology we run the end-host logic on the clients of the

1 Gbps
10 Gbps

(a) Star topology, 10 clients
pushing traffic to a data sink.

(b) Fat-tree topology, 4-port
switches, 2 pods and 8 hosts.

Fig. 3: Experimental topologies.

previous setup, and use 10 NetFPGA-1G equipped hosts with
OpenFlow functionality [33], to replicate the switching fabric.
For ns-3 we use the CSMA link model and build a simple
switching host type, to replicate switch behaviour. For the
equivalent SELENA experimental setups we use Linux VMs
with custom 3.13.0 kernel and Open vSwitch (1.11) for switch
emulation. SELENA, Mininet and ns-3 are executed on the
same quad core server (Intel Xeon E5-2643, 128GB RAM)
for fair comparison.

B. Data-Plane fidelity

In this section we use the star topology to evaluate the
capability of the tested experimentation platforms to support
10 Gbps traffic. For this experiment we use steady-state
long-running TCP flows, generated by the netperf application
in the real, SELENA and Mininet experiments and a TCP
BulkSendTraffic application in ns-3. Starting at t=0, a
new full-rate TCP-flow is initiated every 10 seconds from a
previously idle host, resulting in 10 Gbps throughput at time
t=90 sec.

Firstly, we analyse the impact of TDF on the per-client
throughput. Figure 4 presents boxplots of the network through-
put measurements from all clients, using a monitoring window
of 100 msec. We notice that TDF = 5 provides a median
throughput of 940Mbps, the maximum achievable TCP rate for
a host in this setup. However, this TDF value exhibits a non-
negligible variance with a few outliers (grey-colored marks),
occurring due to Xen scheduling effects and the inability of the
CPU to handle the offered load. This effect is more evident
for lower values of TDF (e.g. TDF = 1 achieves a median

Fig. 4: Per-host throughput samples for various TDF values

[29]). Nonetheless, recent measurement studies of switch de-
vices [4], [8] have highlighted a significant variability on the
performance of the control plane, especially in available hard-
ware OpenFlow switch implementations. This performance
variability can be explained by a number of design choices,
like the scalability of the communication channel between
the switch silicon, the switch co-processor and the firmware
architecture. However, existing solutions are not easy to reflect
these performance properties and can only replicate simplified
network device models, considering only per-packet processing
latency and buffer sizes.

SELENA provides a tunable switch model that takes ac-
count of the tight coupling between the flow and management
timescales of the network [30]. This allows users to study how
traditional and new control plane performance characteristics
affect the overall network performance. More specifically, we
include a customizable switch implementation which supports
OpenFlow [31] and builds on the Mirage framework [32].
This switch emulation model provides a simple and extensible
packet processing pipeline, to which we add a rate adjustment
mechanism for the different control plane functionalities. Our
model exposes currently performance emulation primitives
for the flow table management mechanism, the packet inter-
ception and injection mechanism and the counters extraction
functionality of the switch. In Section IV-E, we describe the
methodology we followed to integrate a switch model in a
SELENA experiment and to calibrate it in order to match the
performance characteristics of a production switch.

IV. EVALUATION

In this section we present an in-depth evaluation of SE-
LENA’s performance and scalability. Initially, we introduce
the reader to the measurement apparatus of our evalua-
tion (§ IV-A). We compare the experimental fidelity provided
by SELENA against a real system and other established
platforms, namely Mininet and ns-3. Our evaluation considers
fidelity both in terms of high-throughput links (§ IV-B), as well
as larger networks (§ IV-C). Finally, we present a limit analysis
of our time virtualization technique (§ IV-D) and evaluate the
performance realism of real applications in SELENA (§ IV-E).

A. Experimental Setup

In order to evaluate the performance of SELENA, we use
two popular network topologies: a star topology (Figure 3(a))
and a special case of a CLOS, a (fat-tree topology with 4-
port switches and 2 pods (Figure 3(b)). We employ these two
distinct topologies as they provide a simple mechanism to test
both throughput and scalability of the system for high-density
setups. We replicate the experiments of each topology four
times: in SELENA, in a real setup, in Mininet and in ns-3.

In the real setup, the star topology consists of a quad-core
server (Intel Xeon E5-2643, 128GB RAM), 10 data generating
hosts (Intel Core 2 Q6600, 4GB) and a network switch (Pica8
P-3290). The server is equipped with a 10GbE card (Solarflare
SFC9020) and acts as the data-sink. The clients are equiped
with 1 GbE cards (Intel 82571EB) and the switch offers both
1 and 10 GbE interfaces. We monitor the link to the data
sink using a DAG card and an optical splitter. For the fat-
tree topology we run the end-host logic on the clients of the

1 Gbps
10 Gbps

(a) Star topology, 10 clients
pushing traffic to a data sink.

(b) Fat-tree topology, 4-port
switches, 2 pods and 8 hosts.

Fig. 3: Experimental topologies.

previous setup, and use 10 NetFPGA-1G equipped hosts with
OpenFlow functionality [33], to replicate the switching fabric.
For ns-3 we use the CSMA link model and build a simple
switching host type, to replicate switch behaviour. For the
equivalent SELENA experimental setups we use Linux VMs
with custom 3.13.0 kernel and Open vSwitch (1.11) for switch
emulation. SELENA, Mininet and ns-3 are executed on the
same quad core server (Intel Xeon E5-2643, 128GB RAM)
for fair comparison.

B. Data-Plane fidelity

In this section we use the star topology to evaluate the
capability of the tested experimentation platforms to support
10 Gbps traffic. For this experiment we use steady-state
long-running TCP flows, generated by the netperf application
in the real, SELENA and Mininet experiments and a TCP
BulkSendTraffic application in ns-3. Starting at t=0, a
new full-rate TCP-flow is initiated every 10 seconds from a
previously idle host, resulting in 10 Gbps throughput at time
t=90 sec.

Firstly, we analyse the impact of TDF on the per-client
throughput. Figure 4 presents boxplots of the network through-
put measurements from all clients, using a monitoring window
of 100 msec. We notice that TDF = 5 provides a median
throughput of 940Mbps, the maximum achievable TCP rate for
a host in this setup. However, this TDF value exhibits a non-
negligible variance with a few outliers (grey-colored marks),
occurring due to Xen scheduling effects and the inability of the
CPU to handle the offered load. This effect is more evident
for lower values of TDF (e.g. TDF = 1 achieves a median

Fig. 4: Per-host throughput samples for various TDF values

Execution time	

 ns3 : 175m 24s	

selena : 20m

Execution time	

 ns3 : 172m 51s	

selena : 40m

Star Topology

Fat-Tree Topology

MSN ’14, 10/7/14

SUMMARY
• Network emulation is a multidimensional problem.	

• SELENA: scalable emulation platform for large network experiments.	

- Compatible with any cloud application running on PV guests.	

- Experimental reproducibility. 	

- Explicit trade-off control between execution time and fidelity.	

- In-depth understanding of TDF and scheduling interplay.	

- Improved results with respect to state of the art.

8

QUESTIONS?

dimosthenis.pediaditakis@cl.cam.ac.uk	

charalampos.rotsos@cl.cam.ac.uk	

andrew.moore@cl.cam.ac.uk

mailto:dimosthenis.pediaditakis@cl.cam.ac.uk
mailto:charalampos.rotsos@cl.cam.ac.uk
mailto:andrew.moore@cl.cam.ac.uk?subject=

